Skip to main content

POD-Based Reduced-Order Model of an Eddy-Current Levitation Problem

  • Conference paper
  • First Online:
Book cover Scientific Computing in Electrical Engineering

Part of the book series: Mathematics in Industry ((TECMI,volume 28))

  • 692 Accesses

Abstract

The accurate and efficient treatment of eddy-current problems with movement is still a challenge. Very few works applying reduced-order models are available in the literature. In this paper, we propose a proper-orthogonal-decomposition reduced-order model to handle these kind of motional problems. A classical magnetodynamic finite element formulation based on the magnetic vector potential is used as reference and to build up the reduced models. Two approaches are proposed. The TEAM workshop problem 28 is chosen as a test case for validation. Results are compared in terms of accuracy and computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sabariego, R., Gyselinck, J., Dular, P., Geuzaine, C., Legros, W.: Fast multipole acceleration of the hybrid finite-element/boundary-element analysis of 3-D eddy-current problems. IEEE Trans. Magn. 40(2), 1278–1281 (2004)

    Article  Google Scholar 

  2. Boualem, B., Piriou, F.: Numerical models for rotor cage induction machines using finite element method. IEEE Trans. Magn. 34(5), 3202–3205 (1998)

    Article  Google Scholar 

  3. Rapetti, F.: An overlapping mortar element approach to coupled magneto-mechanical problems. Math. Comput. Simul. 88(8), 1647–1656 (2010)

    Article  MathSciNet  Google Scholar 

  4. Liu, Z., Liu, S., Mohammed, O.A.: A practical method for building the fe-based phase variable model of single phase transformers for dynamic simulations. IEEE Trans. Magn. 43(4), 1761–1764 (2007)

    Article  Google Scholar 

  5. Lee, S.M., Lee, S.H., Choi, H.S., Park, I.H.: Reduced modeling of eddy current-driven electromechanical system using conductor segmentation and circuit parameters extracted by FEA. IEEE Trans. Magn. 41(5), 1448–1451 (2005)

    Article  Google Scholar 

  6. Schilders, W.H., Van der Vorst, H.A., Rommes, J.: Model Order Reduction: Theory, Research Aspects and Applications. Springer, Berlin (2008)

    Google Scholar 

  7. Yue, Y., Feng, L., Meuris, P., Schoenmaker, W., Benner, P.: Application of Krylov-type parametric model order reduction in efficient uncertainty quantification of electro-thermal circuit models. In: Proceedings of the Progress in Electromagnetics Research Symposium (PIERS), pp. 379–384 (2015)

    Google Scholar 

  8. Banagaaya, N., Feng, L., Meuris, P., Schoenmaker, W., Benner, P.: Model order reduction of an electro-thermal package model. IFAC-PapersOnLine 48(1), 934–935 (2015)

    Article  Google Scholar 

  9. Albunni, M.N., Rischmuller, V., Fritzsche, T., Lohmann, B.: Model-order reduction of moving nonlinear electromagnetic devices. IEEE Trans. Magn. 44(7), 1822–1829 (2008)

    Article  Google Scholar 

  10. Henneron, T., Clénet, S.: Model order reduction applied to the numerical study of electrical motor based on POD method taking into account rotation movement. Int. J. Numer. Model. 27(3), 485–494 (2014)

    Article  Google Scholar 

  11. Sato, T., Sato, Y., Igarashi, H.: Model order reduction for moving objects: fast simulation of vibration energy harvesters. COMPEL 34(5), 1623–1636 (2015)

    Article  Google Scholar 

  12. Schmidthäusler, D., Schöps and Clemens, M.: Linear subspace reduction for quasistatic field simulations to accelerate repeated computations. IEEE Trans. Magn. 50(2), article # 7010304 (2014)

    Article  Google Scholar 

  13. Karl, H., Fetzer, J., Kurz, S., Lehner, G., Rucker, W.M.: Description of TEAM workshop problem 28: an electrodynamic levitation device. In: Proceedings of the TEAM Workshop, Graz, pp. 48–51 (1997)

    Google Scholar 

  14. Henrotte, F., Nicolet, A., Hedia, H., Genon, A., Legros, W.: Modelling of electromechanical relays taking into account movement and electric circuits. IEEE Trans. Magn. 30(5), 3236–3239 (1994)

    Article  Google Scholar 

  15. Sato, Y., Igarashi, H.: Model reduction of three-dimensional eddy current problems based on the method of snapshots. IEEE Trans. Magn. 49(5), 1697–1700 (2013)

    Article  Google Scholar 

  16. Hasan, Md. R., Sabariego, R. V., Geuzaine, C., Paquay, Y.: Proper orthogonal decomposition versus Krylov subspace methods in reduced-order energy-converter models. In: Proceedings of IEEE International Energy Conference, pp. 1–6 (2016)

    Google Scholar 

  17. Parent, G., Dular, P., Ducreux, J.P., Piriou, F.: Using a Galerkin projection method for coupled problems. IEEE Trans. Magn. 44(6), 830–833 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Rokibul Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hasan, M.R., Montier, L., Henneron, T., Sabariego, R.V. (2018). POD-Based Reduced-Order Model of an Eddy-Current Levitation Problem. In: Langer, U., Amrhein, W., Zulehner, W. (eds) Scientific Computing in Electrical Engineering. Mathematics in Industry(), vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-75538-0_20

Download citation

Publish with us

Policies and ethics