Skip to main content

Quadrature Methods and Model Order Reduction for Sparse Approximations in Random Linear Dynamical Systems

  • Conference paper
  • First Online:
Scientific Computing in Electrical Engineering

Part of the book series: Mathematics in Industry ((TECMI,volume 28))

  • 679 Accesses

Abstract

We consider linear dynamical systems including random variables to model uncertainties of physical parameters. The output of the system is expanded into a series with orthogonal basis functions. Our aim is to identify a sparse approximation, where just a low number of basis functions is required for a sufficiently accurate representation. The coefficient functions of the expansion are approximated by a quadrature method or a sampling technique. The performance of a quadrature scheme can be described by a larger linear dynamical system, which is weakly coupled. We apply methods of model order reduction to the coupled system, which results in a sparse approximation of the original expansion. The approximation error is estimated by Hardy norms of transfer functions. Furthermore, we present numerical results for a test example modelling the electric circuit of a band pass filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)

    Google Scholar 

  2. Augustin, F., Gilg, A., Paffrath, M., Rentrop, P., Wever, U.: Polynomial chaos for the approximation of uncertainties: chances and limits. Eur. J. Appl. Math. 19, 149–190 (2008)

    Google Scholar 

  3. Benner, P., Schneider, A.: Balanced truncation model order reduction for LTI systems with many inputs or outputs. In: Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems, MTNS 2010, Budapest, July 5–9, pp. 1971–1974 (2010)

    Google Scholar 

  4. Benner, P., Hinze, M., ter Maten, E.J.W. (eds.): Model Reduction for Circuit Simulation. Springer, Dordrecht (2011)

    Google Scholar 

  5. Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based on least angle regression. J. Comput. Phys. 230, 2345–2367 (2011)

    Google Scholar 

  6. Bond, B.N.: Stability-preserving model reduction for linear and nonlinear systems arising in analog circuit applications. Ph.D. thesis, Massachusetts Institute of Technology (2010)

    Google Scholar 

  7. Burkardt, J.: Sparse grids based on the Clenshaw Curtis rule. Online document (2009). http://people.sc.fsu.edu/~jburkardt/m_scr/sparse_grid_cc/sparse_grid_cc.html [cited 14 Sept 2016]

  8. Conrad, P.R., Marzouk, Y.M.: Adaptive Smolyak pseudospectral approximations. SIAM J. Sci. Comput. 35, A2643–A2670 (2013)

    Google Scholar 

  9. Dahlquist, G., Björck, A.: Numerical Methods in Scientific Computing, vol. I. SIAM, Philadelphia (2008)

    Google Scholar 

  10. Doostan, A., Owhadi, H.: A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230, 3015–3034 (2011)

    Google Scholar 

  11. Freund, R.: Model reduction methods based on Krylov subspaces. Acta Numer. 12, 267–319 (2003)

    Google Scholar 

  12. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–232 (1998)

    Google Scholar 

  13. Ho, C.W., Ruehli, A., Brennan, P.: The modified nodal approach to network analysis. IEEE Trans. Circuits Syst. 22, 504–509 (1975)

    Google Scholar 

  14. Jakeman, J.D., Eldred, M.S., Sargsyan, K.: Enhancing 1-minimization estimates of polynomial chaos expansions using basis selection. J. Comput. Phys. 289, 18–34 (2015)

    Google Scholar 

  15. Kessler, R.: Aufstellen und numerisches Lösen von Differential-Gleichungen zur Berechnung des Zeitverhaltens elektrischer Schaltungen bei beliebigen Eingangs-Signalen. Online document (2007). http://www.home.hs-karlsruhe.de/~kero0001/aufst6/AufstDGL6hs.html [cited 22 Aug 2016]

  16. MATLAB, version 8.6.0 (R2015b). The Mathworks Inc., Natick (2015)

    Google Scholar 

  17. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Google Scholar 

  18. Pulch, R.: Stochastic collocation and stochastic Galerkin methods for linear differential algebraic equations. J. Comput. Appl. Math. 262, 281–291 (2014)

    Google Scholar 

  19. Pulch, R.: Model order reduction and low-dimensional representations for random linear dynamical systems. Math. Comput. Simulat. 144, 1–20 (2018)

    Google Scholar 

  20. Pulch, R.: Model order reduction for stochastic expansions of electric circuits. In: Bartel, A., Clemens, M., Günther, M., ter Maten, E.J.W. (eds.) Scientific Computing in Electrical Engineering SCEE 2014. Mathematics in Industry, vol. 23, pp. 223–231. Springer, Berlin (2016)

    Google Scholar 

  21. Pulch, R., ter Maten, E.J.W.: Stochastic Galerkin methods and model order reduction for linear dynamical systems. Int. J. Uncertain. Quantif. 5, 255–273 (2015)

    Google Scholar 

  22. Pulch, R., ter Maten, E.J.W., Augustin, F.: Sensitivity analysis and model order reduction for random linear dynamical systems. Math. Comput. Simul. 111, 80–95 (2015)

    Google Scholar 

  23. Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice Hall, Upper Saddle River (1971)

    Google Scholar 

  24. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Pulch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pulch, R. (2018). Quadrature Methods and Model Order Reduction for Sparse Approximations in Random Linear Dynamical Systems. In: Langer, U., Amrhein, W., Zulehner, W. (eds) Scientific Computing in Electrical Engineering. Mathematics in Industry(), vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-75538-0_19

Download citation

Publish with us

Policies and ethics