Skip to main content

Estimation and Control Design for Tower Motions

  • Chapter
  • First Online:
  • 814 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Wind turbine blade pitch adjustment can be used to alleviate excessive tower loads caused by unsteady aerodynamic loads. At present, tower damping control strategies assume sensory input from an additional tower-top accelerometer, leading to extra costs associated with installation. The main result of this chapter is to show that this sensor is redundant in the sense that tower motion can be estimated solely from existing blade load sensors. This is possible owing to the dynamic coupling between the blades and towers, but is challenging since the blade loads occur in a rotating frame of reference with respect to the fixed tower, resulting in a time-varying system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bittanti, S., & Colaneri, P. (2009). Periodic systems. London: Springer.

    MATH  Google Scholar 

  • Bossanyi, E. A. (2000). The Design of closed loop controllers for wind turbines. Wind Energy, 3(3), 149–163.

    Article  Google Scholar 

  • Bossanyi, E. A. (2003a). Individual blade pitch control for load reduction. Wind Energy, 6(2), 119–128.

    Article  Google Scholar 

  • Bossanyi, E. A. (2003b). Wind turbine control for load reduction. Wind Energy, 6(3), 229–244.

    Article  Google Scholar 

  • Brockett, R. W. (1970). Finite dimensional linear systems. New York: Wiley.

    MATH  Google Scholar 

  • Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Chen, C. T. (1984). Linear system theory and design. Oxford: Oxford University Press.

    Google Scholar 

  • D’Angelo, H. (1970). Linear time-varying systems: Analysis and synthesis. Boston: Allyn and Bacon.

    MATH  Google Scholar 

  • Dunne, F., Pao, L. Y., Wright, A. D., Jonkman, B., & Kelley, N. (2011). Adding feedforward blade pitch control to standard feedback controllers for load mitigation in wind turbines. Mechatronics, 21, 682–690.

    Article  Google Scholar 

  • Evans, M. A., Cannon, M., & Kouvaritakis, B. (2015). Robust MPC tower damping for variable speed wind turbines. IEEE Transactions on Control Systems Technology, 23(1), 290–296.

    Article  Google Scholar 

  • Feng, X., Patton, R., & Wang, Z. (2014). Sensor fault tolerant control of a wind turbine via Takagi-Sugeno fuzzy observer and model predictive control. In 2014 UKACC International Conference on Control (CONTROL) (pp. 480–485). IEEE.

    Google Scholar 

  • Johnson, C. D. (1971). Accommodation of external disturbances in linear regulator and servomechanism problems. IEEE Transactions on Automatic Control, 16(6), 635–644.

    Article  Google Scholar 

  • Jonkman, B. (2009). TurbSim User’s Guide TurbSim User’s Guide (Technical Report). National Renewable Energy Laboratory (NREL).

    Google Scholar 

  • Jonkman, J., & Buhl Jr, M. (2005). FAST User’s Guide (Technical Report). National Renewable Energy Laboratory (NREL).

    Google Scholar 

  • Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW Reference Wind Turbine for Offshore System Development (Technical Report). Golden, CO: National Renewable Energy Laboratory (NREL).

    Google Scholar 

  • Kalman, R. (1959). On the general theory of control systems. IRE Transactions on Automatic Control, 4(3), 110–110.

    Article  Google Scholar 

  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35.

    Article  Google Scholar 

  • Laks, J., Pao, L., Wright, A., Kelley, N., & Jonkman, B. (2011). The use of preview wind measurements for blade pitch control. Mechatronics, 21(4), 668–681.

    Article  Google Scholar 

  • Larsen, T. J., & Hanson, T. D. (2007). A method to avoid negative damped low frequent tower vibrations for a oating, pitch controlled wind turbine. In Proceedings of the Science of Making Torque from Wind.

    Google Scholar 

  • Leithead, W., Dominguez, S., & Spruce, C. (2004). Analysis of Tower/Blade interaction in the cancellation of the tower fore-aft mode via control. EWEC.

    Google Scholar 

  • Leithead, W., Neilson, V., & Dominguez, S. (2009). Alleviation of unbalanced rotor loads by single blade controllers. In European Wind Energy Conference.

    Google Scholar 

  • Leithead, W., Neilson, V., Dominguez, S., & Dutka, A. (2009). A novel approach to structural load control using intelligent actuators. In 2009 17th Mediterranean Conference on Control and Automation (pp. 1257–1262). IEEE.

    Google Scholar 

  • Lio, W. H., Jones, B. L., Lu, Q., & Rossiter, J. A. (2015). Fundamental performance similarities between individual pitch control strategies for wind turbines. International Journal of Control, 1–16.

    Google Scholar 

  • Lu, Q., Bowyer, R., & Jones, B. (2015). Analysis and design of Coleman transformbased individual pitch controllers for wind-turbine load reduction. Wind Energy, 18(8), 1451–1468.

    Article  Google Scholar 

  • Markou, H., Buhl, T., Marrant, B., & van Engelen, T. (2006). Morphological Study of Aeroelastic Control Concepts for Wind Turbines. ECN Report.

    Google Scholar 

  • Montagnier, P., Spiteri, R. J., & Angeles, J. (2004). The control of linear time-periodic systems using Floquet-Lyapunov theory. International Journal of Control.

    Google Scholar 

  • Odgaard, P. F., & Stoustrup, J. (2013). Fault tolerant control of wind turbines: A benchmark model. IEEE Transactions on Control Systems Technology, 21(4), 1168–1182.

    Article  Google Scholar 

  • Pao, L., & Johnson, K. (2009). A tutorial on the dynamics and control of wind turbines and wind farms. In Proceedings of ACC.

    Google Scholar 

  • Sami, M., & Patton, R. J. (2012). Global wind turbine FTC via T-S fuzzy modelling and control (Vol. 45, No. 20). IFAC.

    Google Scholar 

  • Selvam, K., Kanev, S., van Wingerden, J. W., van Engelen, T., & Verhaegen, M. (2009). Feedback-feedforward individual pitch control for wind turbine load reduction. International Journal of Robust and Nonlinear Control, 19(1), 72–91.

    Article  MathSciNet  MATH  Google Scholar 

  • Spruce, C. J., & Turner, J. K. (2013). Tower vibration control of active stall wind turbines. IEEE Transactions on Control Systems Technology, 21(4), 1049–1066.

    Article  Google Scholar 

  • van Engelen, T. G. (2006). Design model and load reduction assessment for multirotational mode individual pitch control (higher harmonics control). In Proceedings of European Wind Energy Conference.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Hou (Alan) Lio .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lio, W. (2018). Estimation and Control Design for Tower Motions. In: Blade-Pitch Control for Wind Turbine Load Reductions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-75532-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75532-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75531-1

  • Online ISBN: 978-3-319-75532-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics