Skip to main content

Background of Wind Turbine Blade-Pitch Load Reduction Control

  • Chapter
  • First Online:
Blade-Pitch Control for Wind Turbine Load Reductions

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The aim of this chapter is to provide some background regarding to the wind turbine operations, modelling and control. Firstly, this chapter introduces the basic operation of a typical modern wind turbine in Sects. 2.2 and 2.3 and followed by the modelling aspect of a wind turbine including aerodynamics, rotor, blades and tower in Sect. 2.4. Section 2.5 presents background of the model predictive control. Subsequently, the fatigue load assessment methods are discussed in Sect. 2.6. Section 2.7 presents the details of the simulation package FAST (Jonkman and Buhl in FAST User’s Guide, 2005) and simulation turbine NREL 5 MW (Jonkman et al. in Definition of a 5-MW reference wind turbine for offshore system development, 2009). Finally, the design of the baseline CPC and IPC controller is discussed in Sect. 2.8 and followed by a summary in Sect. 2.9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The flap-wise aerodynamic loadings is a sum of the out-of-plane forces multiplied by the corresponding radial distance from the blade root.

References

  • Arnett, E. B., Huso, M. M., Schirmacher, M. R., & Hayes, J. P. (2011). Altering turbine speed reduces bat mortality at wind-energy facilities. Frontiers in Ecology and the Environment, 9(4), 209–214.

    Article  Google Scholar 

  • Aström, K. J., & Murray, R. M. (2010). Feedback systems: An introduction for scientists and engineers. Princeton: Princeton University Press.

    Google Scholar 

  • Barlas, T., & van Kuik, G. (2010). Review of state of the art in smart rotor control research for wind turbines. Progress in Aerospace Sciences, 46(1), 1–27.

    Article  Google Scholar 

  • Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Betz, A. (1966). Introduction to the theory of flow machines (Vol. 1) (No. 1). Oxford: Permagon Press.

    Google Scholar 

  • Bossanyi, E. A. (2000). The design of closed loop controllers for wind turbines. Wind Energy, 3(3), 149–163.

    Article  Google Scholar 

  • Bossanyi, E. A. (2003a). Individual blade pitch control for load reduction. Wind Energy, 6(2), 119–128.

    Article  Google Scholar 

  • Bossanyi, E. A. (2003b). Wind turbine control for load reduction. Wind Energy, 6(3), 229–244.

    Article  Google Scholar 

  • Burton, T., Jenkins, N., Sharpe, D., & Bossanyi, E. (2011). Wind energy handbook. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Castaignet, D., Barlas, T., & Buhl, T. (2013). Full scale test of trailing edge flaps on a Vestas V27 wind turbine: Active load reduction and system identification. Wind Energy, 2–6.

    Google Scholar 

  • Chiang, M.-H. (2011). A novel pitch control system for a wind turbine driven by a variable-speed pump-controlled hydraulic servo system. Mechatronics, 21(4), 753–761.

    Article  Google Scholar 

  • Clarke, D., Mohtadi, C., & Tuffs, P. (1987a). Generalized predictive control—Part II extensions and interpretations. Automatica, 23(2), 149–160.

    Article  MATH  Google Scholar 

  • Clarke, D., Mohtadi, C., & Tuffs, P. (1987b). Generalized predictive control—Part I. The basic algorithm. Automatica, 23(2), 137–148.

    Article  MATH  Google Scholar 

  • Clarke, D., & Scattolini, R. (1991). Constrained receding-horizon predictive control. IEE Proceedings D Control Theory and Applications, 138(4), 347.

    Article  MATH  Google Scholar 

  • Dunne, F., Pao, L. Y., Wright, A. D., Jonkman, B., & Kelley, N. (2011). Adding feedforward blade pitch control to standard feedback controllers for load mitigation in wind turbines. Mechatronics, 21, 682–690.

    Article  Google Scholar 

  • Geyler, M., & Caselitz, P. (2008). Robust multivariable pitch control design for load reduction on large wind turbines. Journal of Solar Energy Engineering, 130(3), 031014.

    Article  Google Scholar 

  • Gilbert, E., & Tan, K. (1991). Linear systems with state and control constraints: The theory and application of maximal output admissible sets. IEEE Transactions on Automatic Control, 36(9), 1008–1020.

    Article  MathSciNet  MATH  Google Scholar 

  • Henriksen, L., Hansen, M., & Poulsen, N. (2012). Wind turbine control with constraint handling: A model predictive control approach. IET Control Theory & Applications, 6(11), 1722.

    Article  MathSciNet  Google Scholar 

  • Jonkman, B. (2009). TurbSim user’s guide (Technical Report). National Renewable Energy Laboratory (NREL).

    Google Scholar 

  • Jonkman, J., & Buhl Jr, M. (2005). FAST user’s guide (Technical Report). National Renewable Energy Laboratory (NREL).

    Google Scholar 

  • Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW reference wind turbine for offshore system development (Technical Report). Golden, CO: National Renewable Energy Laboratory (NREL).

    Google Scholar 

  • Kouvaritakis, B., Rossiter, J. A., & Schuurmans, J. (2000). Efficient robust predictive control. IEEE Transactions on Automatic Control, 45(8), 1545–1549.

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar, A., & Stol, K. (2009). Scheduled model predictive control of a wind turbine. In Proceedings of AIAA/ASME Wind Energy Symposium.

    Google Scholar 

  • Laino, D. J., & Hansen, A. C. (2002). AeroDyn user guide (Technical Report). National Renewable Energy Laboratory (NREL).

    Google Scholar 

  • Laks, J., Pao, L., & Wright, A. (2009). Control of wind turbines: Past, present, and future. In 2009 American Control Conference (pp. 2096–2103). New York: IEEE.

    Google Scholar 

  • Lu, Q., Bowyer, R., & Jones, B. (2015). Analysis and design of Coleman transformbased individual pitch controllers for wind-turbine load reduction. Wind Energy, 18(8), 1451–1468.

    Article  Google Scholar 

  • Mirzaei, M., Henriksen, L. C., Poulsen, N. K., Niemann, H. H., & Hansen, M. H. (2012). Individual pitch control using LIDAR measurements. In Proceedings of IEEE International Conference on Control Applications (pp. 1646–1651).

    Google Scholar 

  • Mosca, E., & Zhang, J. (1992). Stable redesign of predictive control. Automatica, 28(6), 1229–1233.

    Article  MathSciNet  MATH  Google Scholar 

  • Niesłony, A. (2009). Determination of fragments of multiaxial service loading strongly in fluencing the fatigue of machine components. Mechanical Systems and Signal Processing, 23(8), 2712–2721.

    Article  Google Scholar 

  • Pannocchia, G., & Rawlings, J. B. (2003). Disturbance models for offset-free model predictive control. AIChE Journal, 49(2), 426–437.

    Article  Google Scholar 

  • Pao, L., & Johnson, K. (2009). A tutorial on the dynamics and control of wind turbines and wind farms. In Proceedings of ACC.

    Google Scholar 

  • Rawlings, J. B., & Muske, K. R. (1993). The stability of constrained receding horizon bibliography 191 control. IEEE Transactions on Automatic Control, 38(10), 1512–1516.

    Article  MathSciNet  MATH  Google Scholar 

  • Rossiter, J. A. (2003). Model-based predictive control: A practical approach. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Rossiter, J. A., Kouvaritakis, B., & Rice, M. J. (1998). A numerically robust state-space approach to stable-predictive control strategies. Automatica, 34(1), 65–73.

    Article  MathSciNet  MATH  Google Scholar 

  • Schlipf, D., Sandner, F., Raach, S., Matha, D., & Cheng, P. (2013). Nonlinear model predictive control of floating wind turbines. In Proceedings of International Offshore and Polar Engineering (Vol. 9, pp. 440–446).

    Google Scholar 

  • Selvam, K., Kanev, S., van Wingerden, J. W., van Engelen, T., & Verhaegen, M. (2009). Feedback-feedforward individual pitch control for wind turbine load reduction. International Journal of Robust and Nonlinear Control, 19(1), 72–91.

    Article  MathSciNet  MATH  Google Scholar 

  • Simley, E., Dunne, F., Laks, J., & Pao, L. Y. (2013). Lidars and wind turbine control Part 2 (Technical Report). DTU Wind Energy.

    Google Scholar 

  • Soliman, M., Malik, O., & Westwick, D. (2010). Multiple model MIMO predictive control for variable speed variable pitch wind turbines. In Proceedings of ACC (pp. 2778–2784).

    Google Scholar 

  • Spencer, M. D., Stol, K. A., Unsworth, C. P., Cater, J. E., & Norris, S. E. (2013). Model predictive control of a wind turbine using short-term wind field predictions. Wind Energy, 16(3), 417–434.

    Article  Google Scholar 

  • Sutherland, H. J. (1999). On the fatigue analysis of wind turbines (Vol. 1999; Technical Report). Albuquerque, NM, and Livermore, CA: Sandia National Laboratories (SNL).

    Google Scholar 

  • Taylor, G. I. (1938). The spectrum of turbulence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 164(919), 476–490.

    Article  MATH  Google Scholar 

  • Valencia-Palomo, G. (2010). Efficient implementations of predictive control (Ph.D. thesis). University of Sheffield.

    Google Scholar 

  • van Engelen, T. G., & van der Hooft, E. L. (2005). Individual pitch control inventory 194 (Technical Report). ECN.

    Google Scholar 

  • Vinnicombe, G. (2000). Uncertainty and feedback. London: Imperial College Press.

    Book  MATH  Google Scholar 

  • Wang, N., Johnson, K. E., Wright, A. D., & Wright, A. D. (2012). FX-RLS-based feedforward control for LIDAR-enabled wind turbine load mitigation. IEEE Transactions on Control Systems Technology, 20(5), 1212–1222.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai Hou (Alan) Lio .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lio, W. (2018). Background of Wind Turbine Blade-Pitch Load Reduction Control. In: Blade-Pitch Control for Wind Turbine Load Reductions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-75532-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75532-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75531-1

  • Online ISBN: 978-3-319-75532-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics