Skip to main content

Poorly Fertile Soils

  • Chapter
  • First Online:
Management of Soil Problems

Abstract

The capacity of soils to supply plant nutrients in available forms and proper balance, and in the absence of any toxicity, is known as soil fertility. All soils do not have enough capacity to provide plants with optimum nutrients required for their normal growth and development. Many soils are deficient in one or more nutrients. These soils are poorly fertile soils. Major causes of poor soil fertility include shallow depth, coarse texture, poor soil structure, high erosion, low organic matter, low activity clay, low CEC and base saturation, unfavorable chemical environment such as acidity, alkalinity, salinity , sodicity , pollution, etc. and P-fixation. Some soils are naturally poorly fertile and some soils are impoverished by soil mismanagement. Improvement and restoration of soil fertility for sustainable crop production in these soils need integrated soil and crop management efforts. The incorporation of organic residues along with chemical fertilizers, biochar amendment, green manuring, inclusion of a legume in the crop sequence, intercropping, crop rotation, cover crops, residue management and conservation tillage, liming an acidic soil, crop-livestock integration are needed in a concerted manner. No single method is enough for the management of poorly fertile soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abera T, Feyissa D, Yusuf H (2005) Effects of inorganic and organic fertilizers on grain yield of maize-climbing bean intercropping and soil fertility in western Oromiya, Ethiopia. Conference on International Agricultural Research for Development, October 11–13, 2005 Stuttgart-Hohenheim

    Google Scholar 

  • Addo-Quaye AA, Darkwa AA, Ocloo GK (2011) Yield and productivity of component crops in a maize-soybean intercropping system as affected by time of planting and spatial arrangement. J Agric Biol Sci 6(9):50–57

    Google Scholar 

  • Adeniyan ON, Akande SR, Balogun MO, Saka JO (2007) Evaluation of crop yield of African yam bean, maize and kenaf under intercropping systems. Am-Eurasian J Agric Environ Sci 2(1):99–102

    Google Scholar 

  • Africa Soil Health Consortium (2012) In: Fairhurst T (ed) Handbook for integrated soil fertility management. CAB International, Nairobi

    Google Scholar 

  • Amara DG, Mourad SM (2013) Influence of organic manure on the vegetative growth and tuber production of potato (solanum tuberosum L. varspunta) in a Sahara desert region. Int J Agric Crop Sci 5(22):2724–2731

    Google Scholar 

  • Andrews SS (2006) Crop residue removal for biomass energy production: effects on soils and recommendations. White Paper, USDA-Natural Resource Conservation Service. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS /nrcs142p2_ 053255.pdf

  • Anonymous (2010) India losing 5,334 million tonnes of soil annually due to erosion. The Hindu, 26 November 2010

    Google Scholar 

  • Beltran EM, Miralles de Imperial R, Porcel MA, Delgado MM, Beringola ML, Martin, Bigeriego M (2002) Effect of sewage sludge compost application on ammonium nitrogen and nitrate-nitrogen content of an Olive Grove soils. Proceedings: 12th International Soil Conservation Organization Conference. May 26–31, Beijing, China

    Google Scholar 

  • Beltrano J, Ruscitti M, Arango MC, Ronco M (2013) Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. Journal of soil science and plant nutrition 13:123–141

    Google Scholar 

  • Binford GD (2010) Amounts of nutrients removed in corn grain at harvest in Delaware. 19th World Congress of Soil Science, 1–6 Aug 2010, Brisbane, Australia

    Google Scholar 

  • Bing CAO, Fa-Yun H, Qiu-Ming X, Yin B, Gui-Xin CAI (2006) Denitrification Losses and N2O emissions from nitrogen fertilizer applied to a vegetable field. Pedosphere 16(3):390–397

    Article  Google Scholar 

  • Boller E, Hani F (2004) Manures and soil amendments. Ideal book on functional biodiversity at the Farm level

    Google Scholar 

  • Bonelli PR, Rocca D, Cerrella PA, Cukierman AL (2010) Effect of pyrolysis temperature on composition, surface properties and thermal degradation rates of Brazil nut shells. Bioresour Technol 76:15–22

    Article  Google Scholar 

  • Bremer JM, Yeomans JC (1986) Effects of nitrification inhibitors on denitrification of nitrate in soil. Biol Fertil Soils 2(4):173

    Google Scholar 

  • Brunetti J (2005) Cobalt for soil and animal health. In: Wise traditions in food, farming and the healing arts. Wiston A Price Foundation, USA

    Google Scholar 

  • Camberato J, Brad J, Nielsen RL (2008) Nitrogen loss in wet and wetter fields. Corney News Network, Purdue University. URL: http://www.kingcorn.org/

  • Cherr CM, Scholberg JMS, McSorley R (2006) Green manure approaches to crop production. Synth Agron J 98:302–319

    Article  Google Scholar 

  • Conacher J, Conacher A (1998) Organic farming and the environment, with particular reference to Australia. Biological Agriculture. Horticulture 16:145–171

    Google Scholar 

  • Coyne MS, Thompson JA (2006) Math for soil scientists. Thomson Delmar Learning, Clifton Park, NY

    Google Scholar 

  • de Oliveira MW, Trivelin PCO, Boaretto AE, Muraoka T, Mortatti J (2002) Leaching of nitrogen, potassium, calcium and magnesium in a sandy soil cultivated with sugarcane. J Pesq Agropec Bras 37(6):861–868

    Article  Google Scholar 

  • Dougill AJ, Twyman C, Thomas DS, Sporton D (2002) Soil degradation assessment in mixed farming systems of southern Africa: Use of nutrient balance studies for participatory degradation monitoring. Geogr J 168:195–210

    Article  Google Scholar 

  • Drechsel P, Gyiele L, Kunze D, Cofie O (2001) Population density, soil nutrient depletion, and economic growth in sub-Saharan Africa. Ecol Econ 38:251–258

    Article  Google Scholar 

  • Egbe OM (2010) Effects of plant density of intercropped soybean with tall sorghum on competitive ability of soybean and economic yield at Otobi, Benue State, Nigeria. J Cereals Oilseeds 1(1):1–10

    Google Scholar 

  • Eghball B (2001) Composting manure and other organic residue. Cooperative Extension Publication (NebGuide), Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln

    Google Scholar 

  • Elser JJ, Bracken ME, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary production in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135

    Article  Google Scholar 

  • Eswaran H, Lal R, Reich PF (2002) Land degradation: an overview. In: Bridges EM, Hannam ID, Oldeman LR, de Vries FWT P, Scherr SJ, Sompatpanit S (eds) Proceedings of the 2nd International Conference on Land Degradation and Desertification. Oxford University Press, New Delhi, India

    Google Scholar 

  • Ezeaku IE, Mbah BN, Baiyeri KP, Okechukwu EC (2015) Integrated crop-livestock farming system for sustainable agricultural production in Nigeria. Afr J Agric Res 10(47):4268–4274

    Article  CAS  Google Scholar 

  • FAO (2001a) Lecture notes on the major soils of the world. FAO, Rome

    Google Scholar 

  • FAO (2001b) Food and Agriculture Organization of the United Nations FAOSTAT database. (http://apps.fao.org)

  • FAO (2003) Assessment of soil nutrient balance: approaches and methodologies. FAO Fertilizer and Plant Nutrition Bulletin 14. FAO, Rome

    Google Scholar 

  • FAO (2004) FAO Food Balance Sheets. FAOSTAT, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2006) Fertilizer use by crop. FAO Fertilizer and Plant Nutrition Bulletin 17. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2007) Tropical crop-livestock systems in conservation agriculture. The Brazilian Experience. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Felix KN, Chris AS, Jayne M, Monicah M-M, Daniel M (2012) The potential of organic and inorganic nutrient sources in Sub- Saharan African crop farming systems. In: Whalen J (ed) Soil fertility improvement and integrated nutrient management – A global perspective. In Tech, Rijeka, pp 135–156

    Google Scholar 

  • Flavel TC, Murphy DV (2006) Carbon and nitrogen mineralization rates after application of organic amendments to soil. J Environ Qual 35:183–193

    Article  CAS  Google Scholar 

  • Gafur A, Borggaard OK, Jensen JR, Petersen L (2000) Changes in soil nutrient content under shifting cultivation in the Chittagong Hill Tracts of Bangladesh. Danish J Geogr 100:37–46

    Article  Google Scholar 

  • Giani L, Chertov O, Gebhardt C, Kalinina O, Nadporozhskaya M, Tolkdorf-Lienemann E (2004) Plagganthrepts in northwest Russia. Genesis, properties and classification. Geoderma 121:113–122

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Gupta V, Rai PK, Risam KS (2012) Integrated crop-livestock farming systems: a strategy for resource conservation and environmental sustainability. Indian Res J Ext Educ, Special Issue (Volume II): 49

    Google Scholar 

  • Hairiah K (2004) Introduction to part IV: Herbaceous legume fallows. In: Cairns M (ed) Voices from the forest: farmer solutions towards improved fallow husbandry in Southeast Asia. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Hardie MA, Oliver G, Clothier BE, Bound SA, Green SA, Dugald C, Close DC (2015) Effect of biochar on nutrient leaching in a young apple orchard. J Environ Qual 44(4):1273–1282

    Article  CAS  Google Scholar 

  • Hartemink AE (2006) Assessing soil fertility decline in the tropics using soil chemical data. Adv Agron 89:179–223

    Article  Google Scholar 

  • Hassanpanah D, Jafar A (2012) Evaluation of ‘Out Salt’ anti-stress material effects on mini-tuber production of potato cultivars under in-vivo condition. J Food Agric Environ 10(1):256–259

    Google Scholar 

  • Heard J, Cavers C, Adrian G (2001) Up in smoke—nutrient loss with straw burning. Better Crops 90(3):10–11

    Google Scholar 

  • Herrera E (2000) Soil test interpretations. Guident A-122. http://aces.nmsu.edu/pubs/_a/a-122.pdf. Accessed 22 Dec 2011

  • Horneck DA, Sullivan DM, Owen JS, Hart JM (2011) Soil test interpretation guide. http://www.sanjuanislandscd.org/Soil_Survey/files/page18_3.pdf. Accessed on 3 Jan 2012

  • International Fertilizer Development Corporation (IFDC) (2003) Input subsidies and agricultural development: issues and options for developing and transitional economies. IFDC Paper Series No. P-29. Muscles Shoals, Alabama

    Google Scholar 

  • Izaurralde RC, Rosenberg NJ, Lal R (2001) Mitigation of climate change by soil carbon sequestration: Issues of science, monitoring and degraded lands. Adv Agron 70:1–75

    Article  Google Scholar 

  • Jacobsen J, Lorbeer S, Schaff B, Jones C (2002) Variation in soil fertility test results from selected Northern Great Plains laboratories. Commun Soil Sci Plant Anal 33(3 & 4):303–319

    Article  CAS  Google Scholar 

  • Jarenyama P, Hesterman OB, Waddington SR, Harwood RR (2000) Relay-intercropping of sunhemp and cowpea into a smallholder maize system in Zimbabwe. Agron J 92:239–244

    Article  Google Scholar 

  • Kambabe VH, Mkandawire R (2003) The effect of Pigeonpea Intercropping and Inorganic Fertilizer Management on Drought and Low Nitrogen Tolerant Maize Varieties in Malawi. In: Sakala WD. Kabambe VH (eds) Maize Agronomy Research Report, 2000–2004, pp. 7–13. Record Number 20083326997

    Google Scholar 

  • Kamo T, Hiradate S, Fujii Y (2003) First isolation of natural cyanamide as a possible allelochemical from hairy vetch Viciavillosa. J Chem Ecol 29:275–283

    Article  CAS  Google Scholar 

  • Kelly VA (2006) Factors affecting demand for fertilizer in Sub-Saharan Africa: agriculture and rural development discussion Paper 23. World Bank, Washington, DC

    Google Scholar 

  • Lehmann J (2007) Nature a handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Lehmann J, de Silva JP Jr, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Rondon M (2006) Bio Char soil management on highly weathered soils in the humid tropics. In: Uphoff N et al (eds) Biological approaches to sustainable soil systems. CRC Press, Florida

    Google Scholar 

  • Lehmann J, Schroth G (2003) Nutrient Leaching. In: Schroth G, Sinlair FL (eds) Trees, crops and soil fertility. CAS International, Wallingford, UK

    Google Scholar 

  • Lewis WM, Wurtsbaugh WA, Paerl HW (2011) Rationale for control of anthropogenic nitrogen and phosphorus in inland waters. Environ Sci Technol 45:10030–10035

    Article  Google Scholar 

  • Li ZX, Dong ST, Wang KJ, Liu P, Zhang JW, Wang QC, Liu CX (2008) Soil nutrient leaching patterns in maize field under different fertilizations: an in situ study [in Chinese]. Ying Yong Sheng Tai Xue Bao 19(1):65–70

    CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, FJ LËœo, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Lima HN, Schaefer CER, Mello JWV, Gilkes RJ, Ker JC (2002) Pedogenesis and pre-Colombian land use of Terra Preta Anthrosols (Indian black earth) of Western Amazonia. Geoderma 110:1–17

    Article  CAS  Google Scholar 

  • Liu J, Xie Q, Shi Q, Li M (2008) Rice uptake and recovery of nitrogen with different methods of applying 15N-labeled chicken manure and ammonium sulfate. Plant Prod Sci 11:271–227

    Article  CAS  Google Scholar 

  • Lofkvist J, Whalley WR, Clark LJ (2005) A rapid screening method for good root-penetration ability: comparison of species with very different root morphology. Acta Agric Scand 55:120–124

    Google Scholar 

  • Major J, Steinerm C, Downiem A, Lehmann J (2009) Biochar effects on nutrient leaching. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, UK

    Google Scholar 

  • Mapfumo P, Campbell BM, Mpepereki S, Mafongoya P (2001) Legumes in soil fertility management: the case of Pigeonpea in smallholder farming systems of Zimbabwe. Afr Crop Sci J 9(4):629–644

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Mucheru-Muna M, Pypers P, Mugendi D, Kung’u J, Mugwe J, Merckx R, Vanlauwe B (2010) Staggered maize–legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crop Res 115:132–139

    Article  Google Scholar 

  • Musa E, Sas-Paszt L, Guszek S, Ciesieska J (2015) Organic fertilizers to sustain soil fertility. In: Sinha S (ed) Fertilizer Technology I Synthesis, Chapter: 11. Studium Press LLC, USA, pp 255–278

    Google Scholar 

  • Nguyen TH, Brown RA, Ball WP (2004) An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment. Org Geochem 35:217–234

    Article  CAS  Google Scholar 

  • Obadoni BO, Mensah JK, Emua SA (2010) Productivity of intercropping systems using Amaranthus cruentus L. and Abelmoschus esculentus (Moench) in Edo State, Nigeria. World Rural Observations 2010, 2(2). http://www.sciencepub.net/rural

  • Okoth SA, Siameto E (2011) Evaluation of selected soil fertility management interventions for suppression of Fusarium spp. in a maize and beans intercrop. Tropical and Subtropical Agroecosystems 13:73-80

    Google Scholar 

  • Ortega U, Dunabeitia M, Menendez S, Gonzalez-Murua C, Majada J (2004) Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes. Tree Physiology 24(1):65–73

    Article  CAS  Google Scholar 

  • Osman AN, Ræbild A, Christiansen JL, Bayala J (2011) Performance of cowpea (Vigna unguiculata) and Pearl Millet (Pennisetum glaucum) Intercropped under Parkia biglobosa in an Agroforestry System in Burkina Faso. Afr J Agric Res 6(4):882–891

    Google Scholar 

  • Owens LB, Malone RW, Shipitalo MJ, Edwards WM, Bonta JV (2000) Lysimeter study of nitrate leaching from a corn-soybean rotation. J Environ Qual 29:467–474

    Article  CAS  Google Scholar 

  • Pimentel D (2006) Soil erosion: A food and environmental threat. Environ Dev Sustain 8:119–137

    Article  Google Scholar 

  • Pimentel D, Burgess M (2013) Soil erosion threatens food production. Agriculture 3:443–463

    Article  Google Scholar 

  • Power JF, Wiese R, Flowerday D (2001) Managing farming systems for nitrate control: A research review from management systems evaluation areas. J Environ Qual 30:1866–1880

    Article  CAS  Google Scholar 

  • Rochette P, Angers DA, Chantigny MH, MacDonald JD, Bissonnette N, Bertrand N (2009) Ammonia volatilization following surface application of urea to tilled and no-till soils: A laboratory comparison. Soil Tillage Res 103:310–315

    Article  Google Scholar 

  • Rondon MA, Lehmann J, Ramirez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  • Sanchez PE (2002) Soil Fertility and Hunger in Africa. Science 295:2019–2020

    Article  CAS  Google Scholar 

  • Sanginga N, Dashiell K, Diels J, Vanlauwe B, Lyasse O, Carsky RJ, Tarawali S, Asafo-Adjei B, Menkir A, Schulz S, Singh BB, Chikoye D, Keatinge D, Rodomiro O (2003) Sustainable resource management coupled to resilient germplasm to provide new intensive cereal–grain legume–livestock systems in the dry savanna. Agric Ecosyst Environ 100:305–314

    Article  Google Scholar 

  • Sanginga N, Woomer PL (2009) Integrated soil fertility management in Africa: Principles, Practices and Development Process. Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture, Nairobi

    Google Scholar 

  • Schick J, Bertol I, Balbinot AA Jr, Batistela O (2000) Erosãohídricaem Cambissolo Húmicoalumínicosubmetido a diferentessistemas de preparo e cultivo do solo: II. perdas de nutrientes e carbonoorgânico. Rev Bras Ciênc Solo 24:437–447

    Article  CAS  Google Scholar 

  • Smil V (2002) Nitrogen and food production: proteins for human diets. Ambio 31:126–131

    Article  Google Scholar 

  • Soderberg C (2013) Effects of biochar amendment in soils from Kisumu, Kenya. Graduate Project, Department of Soil and Environment, Faculty of Natural Resources and Agricultural Sciences, Swedish University of Agricultural Sciences

    Google Scholar 

  • Sombroek W, Ruivo ML, Fearnside PM, Glaser B, Lehmann J (2003) Amazonian dark earths as carbon stores and sinks. In: Lehmann J et al (eds) Amazonian Dark Earths: Origins, Properties, Management. Kluwer Acad Publ, Dordrecht

    Google Scholar 

  • Steiner C, Teixeria WG, Lehmann J, Nehls T, deMaceˆdo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal, and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Styger E, Fernandes CM (2006) Contributions of Managed Fallows to Soil Fertility Recovery. In: Uphoff N, Ball AS, Fernandes E, Harren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological Approaches to Sustainable Soil Systems (Books in Soils, Plants, and the Environment). CRC Press, Boca Raton

    Google Scholar 

  • Sukristiyonubowo, Watung RL, Vadari T, Agus F (2002) Nutrient loss and the on-site cost of soil erosion under different land use systems. Paper presented at the T" MSEC Annual Assembly. 2–7 Dec 2002. Vientiane, Lao PDR

    Google Scholar 

  • Sullivan P (2003) Intercropping principles and pro-duction practices. Appropriate Technology Transfer for Rural Areas Publication. http://www.attra.ncat.org

  • Tabo R, Bationo A, Gerard B, Ndjeunga J, Marchal D, Amadou B, Annou G, Sogodogo D, Taonda JBS, Hassane O, Maimouna KD, Koala S (2007) Improving cereal productivity and farmers’ income using a strategic application of fertilizers in West Africa. In: Bationo A, Waswa B, Kihara J, Kimetu J (eds) Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities. Kluwer Publishers, Dordrecht, The Netherlands, pp 201–208

    Chapter  Google Scholar 

  • Tahiri S, Guardia MDL (2009) Treatment and valorization of leather industry solid wastes: A review. J Am Leather Chem Assoc 104:52–67

    CAS  Google Scholar 

  • Tan ZX, Lal R, Wiebe KD (2005) Global soil nutrient depletion and yield reduction. J Sustain Agric 26(1):123–146

    Article  Google Scholar 

  • Toomsan B, Cadisch G, Srichantawong M, Thongsodsaeng C, Giller KE, Limpinuntana A (2000) Biological N2-fixation and residual N benefit of pre-rice leguminous crops and green manures. Neth J Agric Sci 48:19–29

    Google Scholar 

  • Toor GS, Condron LM, Cade-Menun BJ, Di HJ, Cameron KC (2005) Preferential phosphorus leaching from an irrigated grassland soil. Eur J Soil Sci 56(2):155–168

    Article  CAS  Google Scholar 

  • Usman M, Madu VU, Alkali G (2015) The combined use of organic and inorganic fertilizers for improving maize crop productivity in Nigeria. Int J Sci Res Pub 8(10):1–7

    Google Scholar 

  • Van Keulen H, Schiere H (2004) Crop-livestock systems: old wine in new bottles? In New directions for a diverse planet. Proceedings of the 4th International Crop Science Congress, 26 September-October 2004, Brisbane, Australia

    Google Scholar 

  • Vanlauwe B, Descheemaeker K, Giller KE, Huising J, Merckx R, Nziguheba G, Wendt J, Zingore S (2015) Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil 1:491–508

    Article  Google Scholar 

  • Vanlauwe B, Bationo A, Chianu J, Giller KE, Merckx R, Mokwunye U, Ohiokpehai O, Pypers P, Tabo R, Shepherd K, Smaling EMA, Woomer PL (2010) Integrated soil fertility management: operational definition and consequences for implementation and dissemination. Outlook Agric 39:17–24

    Article  Google Scholar 

  • Velu V, Ramanathan KM (2001) Nitrogen balance in wetland rice ecosystem as influenced by soil type. J Madras Agril 87:21–25

    Google Scholar 

  • Waddington SR, Karigwindi J (2001) Productivity and profitability of maize + groundnut rotations compared with continuous maize on smallholder farms in Zimbabwe. Exp Agric 37:83–98

    Article  Google Scholar 

  • Waddington SR, Mekuria M, Siziba S, Karigwindi J (2007) Long-term yield sustainability and financial returns from grain legume-maize intercrops on a sandy soil in subhumid North Central Zimbabwe. Exp Agric 43:489–503

    Article  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Webb T, Hewitt A, Lilburne L, McLeod M (2010) Mapping of vulnerability of nitrate and phosphorus leaching, microbial bypass flow, and soil runoff potential for two areas of Canterbury. Report R10/125. Environment Canterbury Regional Council, KauniheraTaiao Ki Waitaha, 58 Kilmore Street PO Box 345 Christchurch 8140

    Google Scholar 

  • Westover HL (1926) Farm manures. USGA Green Section 6(9):193–196

    Google Scholar 

  • Widowati A, Utomo WH (2014) The use of biochar to reduce nitrogen and potassium leaching from soil cultivated with maize. J Degrad Min Lands Manag 2(1):211–218

    Google Scholar 

  • Wild A (1996) Soils and the environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Yao Y, Gao B, Zhang M, Inyang M, Andrew R, Zimmerman AR (2012) Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467–1471

    Article  CAS  Google Scholar 

  • Yoo G, Kim H, Chen J, Kim Y (2013) Effects of biochar addition on nitrogen leaching and soil structure following fertilizer application to rice paddy soil. Soil Sci Soc Am J 78(3):852–860

    Article  Google Scholar 

  • Zhao SL, Gupta SC, Huggins DR, Moncrief JF (2001) Tillage and nutrient source effects on surface and subsurface water quality at corn planting. J Environ Qual 30:998–1008

    Article  CAS  Google Scholar 

  • Zhu Q, Peng X, Huang T (2015) Contrasted effects of biochar on maize growth and N use efficiency dependingon soil conditions. Int Agrophys 29:257–266

    CAS  Google Scholar 

  • Zingore S, Delve RJ, Nyamangara J, Giller KE (2008) Multiple benefits of manure: the key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms. Nut Cycl Agroecosyst 80:267–282

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osman, K.T. (2018). Poorly Fertile Soils. In: Management of Soil Problems. Springer, Cham. https://doi.org/10.1007/978-3-319-75527-4_9

Download citation

Publish with us

Policies and ethics