Skip to main content

Polluted Soils

  • Chapter
  • First Online:
Management of Soil Problems
  • 2047 Accesses

Abstract

Soils can be polluted with several organic and inorganic pollutants. Organic pollutatnts include hazardous persistent organic compounds such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polychlorinated naphthalines (PCNs), polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and other persistent organic substances. Inorganic pollutants mainly include heavy metals such as lead (Pb), cadmium (Cd), mercury (Hg), zinc (Zn), copper (Cu) and nickel (Ni), as well as the metalloid arsenic (As), and radioactive substances or radionuclides. The sources of soil pollutants are mainly anthopogenic. There are also point and diffuse sources; the point sources include municipal wastes, industrial wastes, medical wastes, agricultural wastes, composts and sludges, agrochemicals, domestic wastes and nuclear wastes. Organic and inorganic soil pollutants can be toxic to soil organisms, plants and animals. Some of the soil pollutants enter into the food chain, and can adversely affect human health. Moreover, soil pollutants can be transferred to surrounding air and water through volatilization, runoff, dust storms and leaching. In these ways, the quality of air and water, both surface and groundwater, can be degraded. There are several historic events where soil pollution had devastating effects on native population. Thus, remediation of polluted soils has become a dire necessity in many areas of the world. Meanwhile, some useful methods have been developed for the prevention of soil pollution, including waste management and waste disposal, and remediation of organic pollutants, heavy metals and radioactive pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour A, Golcin A (2011) Immobilization of heavy metals in a contaminated soil in Iran using di-ammonium phosphate, vermicompost and zeolite. Environ Earth Sci 63(5):935–943

    Article  CAS  Google Scholar 

  • Adefila EO, Onwordi CT, Ogunwande IA (2010) Level of heavy metals uptake on vegetables planted on poultry droppings dumpsite. Archives of. Appl Sci Res 2(1):347–335

    CAS  Google Scholar 

  • Adriano DC (2003) Trace elements in terrestrial environments: biogeochemistry, bioavailability and risks of metals. Springer, New York Ahn CK, Kima YM, woo SH, park JM (2008) oil washing using various nonionic surfactants and their recovery by selective adsorption with activated carbon. J Hazard Mater 154:153–160

    Google Scholar 

  • Agnew K, Cundy AB, Hopkinson L, Croudace IW, Warwick PE, Purdie P (2011) Electrokinetic remediation of plutonium-contaminated nuclear site wastes: results from a pilot-scale on-site trial. J Hazard Mater 186:1405–1414

    Article  CAS  Google Scholar 

  • Ahn WY, Busemeyer JR, Wagenmakers EJ, Stout JC (2008) Comparison of decision learning models using the generalization criterion method. Cogn Sci 32:1376–1402

    Article  Google Scholar 

  • Alam MGM, Allinson G, Stagnitti F, Tanaka A, Westbrooke M (2002) Arsenic contamination in Bangladesh groundwater: a major environmental and social disaster. Int J Environ Health Res 12(3):235–253

    Article  CAS  Google Scholar 

  • Alder A, McArdell CS, Giger W, Golet M, Molnar E, Nipales NS (2000) Determination of antibiotics in Swiss wastewater and in surface water. Presented at Antibiotics in the Environment, February 2, 2000, Cranfield, UK

    Google Scholar 

  • Alexander EB, Coleman RG, Keeler-Wolf T, Harrison SP (2007) Serpentine geoecology of western North America: geology, soils and vegetation. Oxford Univ Press, New York

    Google Scholar 

  • Alloway BJ (2012) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability (environmental pollution). Springer, Dodrecht

    Google Scholar 

  • Amanda L (2010) Determination of lead levels in soil and plant uptake studies. Undergraduate Review: a Journal of Undergraduate Student Research 12:48–56

    Google Scholar 

  • Anjum NA, Ahmad I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Iqbal M (2011) Modulation of glutathione, its redox couple and related enzymes in plants under abiotic stresses. In: Anjum NA, Umar S, Ahmad A (eds) Oxidative stress in plants: causes, consequences and tolerance. International Publishing House, New Delhi

    Google Scholar 

  • Arwidsson Z, Elgh-Dalgren K, von Kronhelm T, Sjöberg R, Allard B, van Hees P (2010) Remediation of heavy metal contaminated soil washing residues with amino polycarboxylic acids. J Hazard Mater 173:697–704

    Article  CAS  Google Scholar 

  • Aydinalp C, Marinova S (2003) Distribution and forms of heavy metals in some agricultural soils. Pol J Environ Stud 12(5):629–633

    CAS  Google Scholar 

  • Baeder-Bederski O, Kuschk P, Stottmeister U (1999) Phytovolatilization of organic contaminants. In: Heiden S, Erb R, Warrelmann J, Dierstein R (eds) Biotechnologie im Umweltschutz. Erich Schmidt, Berlin, pp 175–183

    Google Scholar 

  • Bagdatlioglu N, Nergiz C, Ergonul PG (2010) Heavy metal levels in leafy vegetables and some selected fruits. Journal fur Verbraucherschutz ebensmittelsicherheit 5:421–428

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Balashova NV, Kosheleva IA, Golovchenko NP, Boronin AM (1999) Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Process Biochem 35:291–296

    Article  CAS  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Article  Google Scholar 

  • Banasova V, Horak O (2008) Heavy metal content in Thlaspi caerulescens J et C Presl growing on metalliferous and non-metalliferous soils in Central Slovakia. Int J Environ Pollut 33:133–145

    Article  CAS  Google Scholar 

  • Bañuelos GS, Ajwa HA, Mackey B et al (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26(3):639–646

    Article  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  CAS  Google Scholar 

  • Barcelo J, Poschenrieder C, Prasad MNV (2004) Structural and ultrastructural changes in heavy metal exposed plants. In: Heavy metal stress in plants. Springer, Berlin, Heidelberg

    Google Scholar 

  • Barnswell KD (2005) Phytoremediation potential at an inactive landfill in northwest Ohio. Masters thesis, University of Toledo, Spain

    Google Scholar 

  • Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut 127:73–82

    Article  CAS  Google Scholar 

  • Batchelor B (2006) Overview of waste stabilization with cement. Waste Manag 26:689–698

    Article  CAS  Google Scholar 

  • Bech J, Duran P, Roca N, Poma W, Sanchez I, Barcelo J, Boluda R, Roca-Perez L, Poschenrieder L (2012) Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. J Geochem Explor 113:106–111

    Article  CAS  Google Scholar 

  • Becher D, Specht M, Hammer E, Francke W, Schauer F (2000) Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp. strain SBUG 290. Appl Environ Microbiol 66:4528–4531

    Article  CAS  Google Scholar 

  • Benisek M, Kukucka P, Mariani G, Suurkuusk G, Gawlik BM, Locoro G, Giesy JP, Blaha L (2015) Dioxins and dioxin-like compounds in composts and digestates from European countries as determined by the in vitro bioassay and chemical analysis. Chemosphere 122:168–175

    Article  CAS  Google Scholar 

  • Bentum JK, Dodoo DK, Kwakye PK (2012) Accumulation of metals and polychlorinated biphenyls (PCBs) in soils around electric transformers in the central region of Ghana. Adv Appl Sci Res 3(2):634–643

    CAS  Google Scholar 

  • Berken A, Mulholland MM, LeDuc DL, Terry N (2002) Genetic engineering of plants to enhance selenium phytoremediation. Crit Rev Plant Sci 21:567–582

    Article  CAS  Google Scholar 

  • Bert V, Bonnin I, Saumitou-Laprade P, de Laguérie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicollous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    Article  CAS  Google Scholar 

  • Bes C, Mench M (2008) Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation. Environ Pollut 156:1128–1138

    Article  CAS  Google Scholar 

  • Bezdicek D, Fauci M, Caldwell D, Finch R, Lang J (2001) Persistent herbicides in compost. Biocycle 42(7):25–30

    CAS  Google Scholar 

  • Bidwell SD, Crawford SA, Woodrow IE, Summer-Knudsen J, Marshal AT (2004) Sub-cellular localization of Ni in the hyperaccumulator Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ 27:705–716

    Article  CAS  Google Scholar 

  • Bilgin M, Tulun S (2015) Removal of heavy metal (cu, cd and Zn) from comtaminated soils using EDTA and FeCl3. Global NEST J 18(1):98–107

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Boyd RS, Davis MA, Wall MA, Balkwill K (2002) Nickel defends the south African hyperaccumulator Senecio coronatus (Asteraceae) against Helix aspersa (Mollusca: Pulmonidae). Chemoecology 12:91–97

    Article  CAS  Google Scholar 

  • Bradl H (2005) Heavy metals in the environment: origin. Interaction and remediation. Elsevier Academic Press, Amsterdam

    Google Scholar 

  • Bradl H, Xenidis A (2005) Remediation Techniques. In: Bradl HB (ed) Heavy metals in the environment: origin, interaction and remediation. Elsevier, Academic Press, San Diego

    Google Scholar 

  • Brady KU, Kruckeberg AR, Bradshaw HDJR (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annual Review of Ecology Evolution and Systematics 36:243–266

    Article  Google Scholar 

  • Bramley-Alves J, Wasley J, King C, Powell S, Robinson SA (2014) Phytoremediation of hydrocarbon contaminants in subantarctic soils: an effective management option. J Environ Manag 142:60–69

    Article  CAS  Google Scholar 

  • Brandli KRC, Bucheli T, Zennegg TD, Huber M, Ortelli S, Muller D, Schaffner J, Iozza C, Schmid S, Berger P, Edder U, Oehme P, Stadelmann M, Tarradellas FX (2007) Organic pollutants in compost and digestate. Part 2. Polychlorinated dibenzo-p-dioxins, and -furans, dioxin-like polychlorinated biphenyls, brominated flame retardants, perfluorinated alkyl substances, pesticides, and other compounds. J Environ Monit 9:465–472

    Article  Google Scholar 

  • Bressler DC, Fedorak PM (2001) Purification, stability, and mineralization of 3-hydroxy-2- formylbenzothiophene, a metabolite of dibenzothiophene. Appl Environ Microbiol 67:821–826

    Article  CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Erbe EF, Maugel TK (2004) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum. murale. Plant Soil 265:225–242

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB Intern, Wallingford

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explo 7:49–57

    Article  CAS  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol and Environ Safety 45:198–207

    Article  CAS  Google Scholar 

  • Bucheli TD, Gustafsson O (2000) Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environ Sci Technol 34:5144–5151

    Article  CAS  Google Scholar 

  • Buekers J (2007) Fixation of cadmium, copper, nickel and zinc in soil: kinetics, mechanisms and its effect on metal bioavailability, PhD Thesis, Katholieke Universiteit Lueven, Belgium

    Google Scholar 

  • Burgess RM, Perron MM, Friedman CL, Suuberg EM, Pennell KG, Cantwell MG, Pelletier MC, Ho KT, Serbst JR, Ryba SA (2009) Evaluation of the effects of coal fly ash amendments on the toxicity of a contaminated marine sediment. Environ Toxicol Chem 28:26–35

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Burrell AM, Hawkins AK, Pepper AE (2012) Genetic analysis of nickel tolerance in a north American serpentine endemic plant, Caulanthus amplexicaulis var. Barbarae (Brassicaceae). Am J Bot 99(11):1875–1883

    Article  CAS  Google Scholar 

  • CAC (2003) Evaluation of certain food additives and contaminants. FAO/WHO, Codex stan. 230–2001, Rev, 1–2003, Codex Alimentarius Commission, Rome

    Google Scholar 

  • Caldwell RJ, Stegemann JA, Shi C (1999) Effect of curring on field – solidified waste properties, part 1: physical properties. Waste Management and Research 17:37–43

    Article  CAS  Google Scholar 

  • Calheiros CSC, Rangel ADSS, Castro PML (2008) The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch Environ Contam Toxicol 55:404–414

    Article  CAS  Google Scholar 

  • Cameselle C, Gouveia S, Akretche DE, Belhadj B (2013) Advances in Electrokinetic remediation for the removal of organic contaminants in soils. In: Rashed MN (ed) Organic pollutants - monitoring, risk and treatment. INTECH Open Access Publishers. http://www.intechopen.com/

    Google Scholar 

  • Campos VM, Merino I, Casado R, Pacios LF, Gómez L (2008) Review. Phytoremediation of organic pollutants. Span J Agric Res 6(Special issue):38–47

    Article  Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D et al (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58:3–22

    Article  CAS  Google Scholar 

  • Chandrasekhar K, Kamala CT, Chary NS, Balaram V, Garcia G (2005) Potential of Hemidesmus indicus for phytoextraction of lead from industrially contaminated soils. Chemosphere 58:507–514

    Article  CAS  Google Scholar 

  • Chávez FP, Lünsdorf H, Jerez CA (2004) Growth of polychlorinated-biphenyl-degrading bacteria in the presence of biphenyl and chlorobiphenyls generates oxidative stress and massive accumulation of inorganic polyphosphate. Appl Environ Microbiol 70:3064–3072

    Article  CAS  Google Scholar 

  • Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37:304–313

    CAS  Google Scholar 

  • Chen S, Chao L, Sun L, Sun T (2013a) Effects of bacteria on cadmium bioaccumulation in the cadmium hyperaccumulator plant Beta vulgaris var. Cicla L. Int J Phytoremediation 15:477–487

    Article  CAS  Google Scholar 

  • Chen J, Xu QX, Su Y, Shi ZQ, Han FX (2013b) Phytoremediation of organic polluted soil. J Bioremed Biodegr 4:e132

    Google Scholar 

  • Chen YS, Zhang HB, Luo YM et al (2012) Occurrence and assessment of veterinary antibiotics in swine manures: a case study in East China. Chin Sci Bull 57:606–614

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014, Article ID 752708, 12 pages. https://doi.org/10.1155/2014/752708

  • Cho M, Chardonnens AN, Dietz KJ (2003) Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana, a leaf slice test. New Phytol 158:287–293

    Article  CAS  Google Scholar 

  • Choi H, Kim Y, Lim H, Cho J, Kang J, Kim K (2001) Oxidation of polycyclic aromatic hydrocarbons by ozone in the presence of sand. Water Sci Technol 43:349–356

    Article  CAS  Google Scholar 

  • Choi H, Lim H, Kim J (2000) Ozone-enhanced remediation of petroleum hydrocarbon-contaminated soil. In: Wickramanayake GB, Gavaskar AR, Chen AS (eds) Chemical oxidation and reactive barriers: remediation of chlorinated and recalcitrant compounds. Battelle Press, Columbus

    Google Scholar 

  • Correia JP (2014) Remediation by means of chemical passivation for trace metals in contaminated soils. B. Sc. Project, Worcester Polytechnic Institute, Massachusetts

    Google Scholar 

  • Cui S, Zhang T, Zhao S, Li P, Zhao Q, Zhang Q, Han Q (2013) Evaluation of three ornamental plants for phytoremediation of Pb-contaminated soil. Int J Phytoremediation 15:299–306

    Article  CAS  Google Scholar 

  • Cummins I, Dixon DP, Freitag-Pohl S, Skipsey M, Edwards R (2011) Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev 43:266–280

    Article  CAS  Google Scholar 

  • D’Annibale A, Rosetto F, Leonardi V, Federici F, Petruccioli M (2006) Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons. Appl Environ Microbial 72(1):28–36

    Article  CAS  Google Scholar 

  • Dan T, Hale B, Johnson D, Conard B, Stiebel B et al (2008) Toxicity thresholds for oat (Avena sativa L.) grown in Ni-impacted agricultural soils near Port Colborne Ontario Canada. Can J Soil Sci 88:389–398

    Article  CAS  Google Scholar 

  • Danh L, Truong P, Mammucari R, Foster N (2014) A critical review of the arsenic uptake mechanisms and phytoremediation potential of Pteris vittata. Int J Phytoremediation 16:429–453

    Article  CAS  Google Scholar 

  • Davarynejad GH, Vatandoost S, Soltész M, Nyéki J, Szabó Z, Nagy PT (2010) Hazardous element content and consumption risk of nine apricot cultivars. Internat. J Hortic Sci 16(4):61–65

    Google Scholar 

  • de Rosa MS, Zarrilli S, Paesano L, Carbone U, Boggia B, Petretta M et al (2003) Traffic pollutants affect fertility in men. Hum Reprod 18:1055–1061

    Article  CAS  Google Scholar 

  • Dean-Ross D, Cerniglia CE (1996) Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol 46:307–312

    Article  CAS  Google Scholar 

  • Dean-Ross D, Moody J, Cerniglia CE (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Ecol 41(1):1–7

    Article  CAS  Google Scholar 

  • Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Talke IN, Kramer U, Clemens S (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in zinc hyperaccumulation. Plant Cell 24:708–723

    Article  CAS  Google Scholar 

  • Denef VJ, Patrauchan MA, Florizone C, Park J, Tsoi TV, Verstraete W, Tiedje JM, Eltis LD (2005) Growth substrate- and phase-specific expression of biphenyl, benzoate, and C1 metabolic pathways in Burkholderia xenovorans LB400. J Bacteriol 187:7996–8005

    Article  CAS  Google Scholar 

  • Dermatas D, Moon DH, Menounou N, Meng X, Hires R (2004) An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test. J Hazard Mater 116:25–38

    Article  CAS  Google Scholar 

  • Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10(3):244–267

    Article  Google Scholar 

  • Dikinya O, Areda O (2010) Comparative analysis of heavy metal concentration in secondary treated wastewater irrigated soils cultivated by different crops. Int J Environ Sci Technol 7(2):337–346

    Article  CAS  Google Scholar 

  • Diwan H, Ahmad A, Iqbal M (2008) Genotypic variation in the phytoremediation potential of Indian mustard against chromium. toxicity Environ Manage 41:734–741

    Article  Google Scholar 

  • Doick KJ, Klingelmann E, Burauel P, Jones KC, Semple KT (2005) Long-term fate of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in agricultural soil. Environ Sci Technol 39:3663–3670

    Article  CAS  Google Scholar 

  • Domingo JL, Agramunt MC, Nadal M, Schuhmacher M, Corbella J (2002) Health risk assessment of PCDD/PCDF exposure for the population living in the vicinity of a municipal waste incinerator. Arch Environ Contam Toxicol 43(4):461–465

    Article  CAS  Google Scholar 

  • Doty SL, Shang TQ, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2003) Metabolism of the halogenated hydrocarbons, TCE and EDB, by the tropical leguminous tree, Leuceana leucocephala. Water Res 37(2):441–449

    Article  CAS  Google Scholar 

  • Dubey RC (2004) A text book of biotechnology, 3rd edn. S Chand and Company Ltd, New Delhi

    Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Physical Sci 2(5):112–118

    Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  Google Scholar 

  • Ebbs SD, Brady JD, Kochian VL (1998) Role of uranium speciation in the uptake and translocation of uranium by plant. J Exp Bot 49(324):1183–1190

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26(3):776–781

    Article  CAS  Google Scholar 

  • Ellegaard-Jensen L (2012) Fungal degradation of pesticides - construction of microbial consortia for bioremediation. PhD thesis, The PhD School of Science, Faculty of Science, University of Copenhagen, Denmark

    Google Scholar 

  • Ellis LBM, Hou BK, Kang W, Wackett LP (2003) The University of Minnesota biocatalysis/biodegradation database: postgenomic datamining. Nucleic Acids Res 31:262–265

    Article  CAS  Google Scholar 

  • Entry JA, Vance NA, Hamilton MA, Zabowsky D, Watrud LS, Adriano DC (1996) Phytoremediation of soil contaminated with low concentrations radionuclides. Water, Air Soil Pollution 88:167–176

    CAS  Google Scholar 

  • Environment Agency (2007) Environmental concentrations of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in UK soil and herbage, UK SHS report no. 10. Environment Agency, Bristol

    Google Scholar 

  • Etim EE (2012) Phytoremediation and its mechanisms: A review. Int J Environ Bioenergy 2:120–136

    Google Scholar 

  • EU (2000) Working Document on Sludge, 3rd Draft. Unpublished. Cited from EU (2001) Organic Contaminants in Sewage Sludge for Agricultural Use. Institute for Environment and Sustainability Soil and Waste Unit, European Commission Joint Research Centre

    Google Scholar 

  • Falciglia PP, Cannata S, Pace F, Romano S, Vagliasindi (2013) Stabilisation/solidification of radionuclides polluted soils: a novel analytical approach for the assessment of the γ-radiation shielding capacity. Chem Eng Trans 32:223–228

    Google Scholar 

  • Falciglia PP, Cannata S, Romano S, Vagliasindi FGA (2012) Assessment of mechanical resistance, γ-radiation shielding and leachate γ-radiation of stabilised/solidified radionuclides polluted soils: preliminary results. Chem Eng Trans 28:127–132

    Google Scholar 

  • Favas PJC, Pratas JMS, Prasad MNV (2012) Accumulation of arsenic by aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication. Sci Total Environ 433:390–397

    Article  CAS  Google Scholar 

  • Ferreiro PJ, Lu H, Fu S, Mendez A, Gasco G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75

    Article  Google Scholar 

  • Filip Z (2002) International approach to assessing soil quality by ecologically-related biological parameters. Agric Ecosyst Environ 88(2):169–174

    Article  Google Scholar 

  • Finzgar N, Kos B, Lestan D (2006) Bioavailability and mobility of Pb after soil treatment with different remediation methods. Plant Soil Environ 52(1):25–34

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil rhizosphere - plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  CAS  Google Scholar 

  • Flotron V, Delteil C, Padellec Y, Camel V (2005) Removal of sorbed polycylic aromatic hydrocarbons from soil, sludge and sediment sample using the Fenton’s reagent process. Chemosphere 59:1427–1437

    Article  CAS  Google Scholar 

  • Fodor F, Prasad MNV, Strzalka K (2002) Physiological responses of vascular plants to heavy metals. In: Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Dordrecht, p 149

    Chapter  Google Scholar 

  • Fortnagel P, Harms H, Wittich R-M, Krohn S, Meyer H, Sinnwell V, Wilkes H, Francke W (1990) Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl Environ Microbiol 56:1148–1156

    CAS  Google Scholar 

  • Francis AJ (2006) Microbial transformations of radionuclides and environmental restoration through bioremediation. Paper presented at the Symposium on Emerging Trends in Separation Science and Technology SESTEC 2006, held at Bhabha Atomic Research Center (BARC), Trombay, Mumbai, India on September 29–October 1, 2006

    Google Scholar 

  • Francis AJ, Dodge CJ, Lu F, Halada GP, Clayton CR (1994) XPS and XANES studies of uranium reduction by Clostridium sp. Environ Sci Technol 28:636–639

    Article  CAS  Google Scholar 

  • Francis AJ, Dodge CJ, Meinken GE (2002) Biotransformation of pertechnetate by clostridia. Radiochmica Acta 90:791–797

    CAS  Google Scholar 

  • Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EA (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  CAS  Google Scholar 

  • Friends of the Earth (2002) The safety of incinerator ash A review of an Environment Agency Report. November 2002. Friends of the Earth, 26–28 Underwood Street, London

    Google Scholar 

  • Fu D, Teng Y, Luo Y, Tu C, Li S et al (2012) Effects of alfalfa and organic fertilizer on benzo[a]pyrene dissipation in an aged contaminated soil. Environ Sci Pollut Res Int 19:1605–1611

    Article  CAS  Google Scholar 

  • Fu JJ, Zhou QF, Liu JM, Liu W, Wang T, Zhang QH et al (2008) High levels of heavy metals in rice (Oryza sativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere 71:1269–1275

    Article  CAS  Google Scholar 

  • Gadd GM (2001) Fungi in Bioremediation. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  • Gai Z, Yu B, Li L, Wang Y, Ma C, Feng J, Deng Z, Xu P (2007) Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl Environ Microbiol 73:2832–2838

    Article  CAS  Google Scholar 

  • Gao D, Du L, Yang J, Wu W-M, Liang H (2010) A critical review of the application of white rot fungus to environmental pollution control. Crit Rev Biotechnol 30:70–77

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. The European Journal of Mineral Processing and Environmental Protection 3(1):58–66

    Google Scholar 

  • Garbisu C, Alkorta I, Llama MJ, Serra JL (1998) Aerobic chromate reduction by Bacillus subtilis. Biodegradation 9(2):133–141

    Article  CAS  Google Scholar 

  • Garbisu C, Ishii T, Leighton T, Buchanan BB (1997) Bacterial reduction of selenite to elemental selenium. Chem Geol 132:199–204

    Article  Google Scholar 

  • Gardea-Torresday JL, De la Rosa G, Peralta-Videa JR, Montes M, Cruz-Jiminez G, Cano-Aguilera I (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumble wed (Salsola kali). Arch Environ Contam Toxicol 48:225–232

    Article  CAS  Google Scholar 

  • Garret RG (2002) Natural sources of cadmium. In Morrow H (ed) Sources of Cadmium in the Environment. OECD (Organization For Cooperation And Development) Proceedings (703) 759–7003

    Google Scholar 

  • Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510

    Article  CAS  Google Scholar 

  • Georgieva SS, McGrath SP, Hooper DJ, Chambers BS (2002) Nematode communities under stress: the long-termeffects of heavy metals in soil treated with sludge. Applied Soil Ecol 20:27–42

    Article  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Gianfreda L, Bollag JM (2002) Isolated enzymes for the transformation and detoxification of organic pollutants. In: Burns RG, Dick R (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York

    Google Scholar 

  • Gianfreda L, Rao M (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzym Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  • Gitipour S, Ahmadi S, Madadian E, Ardestani M (2011) Soil washing of chromium-and cadmium-contaminated sludge using acids and ethylenediaminetetra acetic acid chelating agent, Environ Technol, 37(1):1–7

    Article  CAS  Google Scholar 

  • Glazer AN, Nikaido H (2007) Microbial biotechnology: fundamentals of applied microbiology, 2nd edn. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  • GOC (2003) Site remediation technologies: a reference manual. Contaminated Sites Working Group, Government of Canada, Ontario

    Google Scholar 

  • Goi A, Trapido M, Kulik N (2009) Contaminated soil remediation with hydrogen peroxide oxidation. Int J Chemi Biol Eng 52:185–189

    Google Scholar 

  • Gomes MP, Cristina T, Lanza L, Marques SM (2013) Cadmium effects on mineral nutrition of the cd-hyperaccumulator Pfaffa glomerata. Biologia 68:223–230

    CAS  Google Scholar 

  • Gong Z, Wilke B–M, Alef K, Li P, Zhou Q (2006) Removal of polycyclic aromatic hydrocarbons from manufactured gas plant-contaminated soils using sunflower oil: laboratory column experiments. Chemosphere 62:780–787

    Article  CAS  Google Scholar 

  • Goyal MK, Chauhan A (2015) Environmental pollution remediation through solidification/fixation of heavy metal ions in Portland cement. J Environ Anal Toxicol 5:323

    Google Scholar 

  • Graffham A (2006) EU legal requirements for imports of fruits and vegetables (a suppliers guide). Fresh Insights no. 1, DFID/IIED/NRI. www.agrifoodstandards.org

  • Greenberg BM (2006) Development and field tests of a multi-process phytoremediation system for decontamination of soils. Can Reclam 1:27–29

    Google Scholar 

  • Greenberg BM, Huang X-D, Dixon DG, Glick BR (2005) An integrated multi-process phytoremediation system (MPPS) for removal of persistent organic contaminants from soil, Proceedings of the Eighth International In Situ and On-Site Bioremediation Symposium, Baltimore, Maryland. Batelle Press, Columbus

    Google Scholar 

  • Greičiūtė K, Vasarevičius S (2007) Decontamination of heavy-metal polluted soil by electrokinetic remediation. Geologija 57:55–62

    Google Scholar 

  • Grosser RJ, Warshawsky D, Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol 57:3462–3469

    CAS  Google Scholar 

  • Gulz PA (2002) Arsenic uptake of common crop plants from contaminated soils and interaction with Phosphate. Ph. D. Thesis, Swiss Federal Institute of Technology, Zurich

    Google Scholar 

  • Guo W, Li D, Tao Y, Gao P, Hu J (2008) Isolation and description of a stable carbazole-degrading microbial consortium consisting of Chryseobacterium sp. NCY and Achromobacter sp. NCW. Curr Microbiol 57:251–257

    Article  CAS  Google Scholar 

  • Habe H, Chung JS, Kato H, Ayabe Y, Kasuga K, Yoshida T, Nojiri H, Yamane H, Omori T (2004) Characterization of the upper pathway genes for fluorene metabolism in Terrabacter sp. strain DBF63. J Bacteriol 186:5938–5944

    Article  CAS  Google Scholar 

  • Habe H, Chung JS, Lee JH, Kasuga K, Yoshida T, Nojiri H, Omori T (2001) Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. Appl Environ Microbiol 67:3610–3617

    Article  CAS  Google Scholar 

  • Habe H, Ide K, Yotsumoto M, Tsuji H, Yoshida T, Nojiri H, Omori T (2002) Degradation characteristics of a dibenzofuran-degrader Terrabacter sp. strain DBF63 toward chlorinated dioxins in soil. Chemosphere 48:201–207

    Article  CAS  Google Scholar 

  • Hamscher G, Abu-quare S, Sczesny S, Hoper H, Nau H (2000) Determination of tetracyclines in soil and water samples from agricultural areas in lower saxony. Presented at EuroResidue IV, Veldhoven. 2000

    Google Scholar 

  • Hansda A, Kumar Anshumali V, Usmani Z (2014) Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): a current perspective. Recent Res Sci Technol 6(1):131–134

    Google Scholar 

  • Harrison EZ, Oakes SR, Hysell M, Hay A (2006) Organic chemicals in sewage sludges. Sci Total Environ 367:481–497

    Article  CAS  Google Scholar 

  • Hedlund BP, Geiselbrecht AD, Staley JT (2001) Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. FEMS Microbiol Lett 201:47–51

    Article  CAS  Google Scholar 

  • Hilber I, Bucheli TD (2010) Activated carbon amendment to remediate contaminated sediments and soils: a review. Global NEST J 12(3):305–317

    Google Scholar 

  • Hirano T, Tamae K (2011) Earthworms and soil pollutants. Sensors (Basel) 11(12):11157–11167

    Article  Google Scholar 

  • Hobbelen PHF, Koolhaas JE, Van Gestel CAM (2006) Effects of heavy metals on the litter decomposition by the earthworm Lumbricus rubellus. Pedobiologia 50:51–60

    Article  CAS  Google Scholar 

  • Hogarh JN, Fobil JN, Ofosu-Budu GK, Carboo D, Ankrah NA, Nyarko A (2008) Assessment of heavy metal contamination and macronutrient content of composts for environmental pollution control in Ghana. Global Journal of Environmental Research 2(3):133–139

    Google Scholar 

  • HPA (2008) HPA compendium of chemical hazards: Dioxins (2,3,7,8-Tetrachlorodibenzo-p-dioxin). CHAPD HQ, HPA 2008, Version 1. Chilton: Health Protection Agency. Available at http://www.extension.umn.edu/distribution.horticulture/DG2543html

  • Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325

    Article  CAS  Google Scholar 

  • Huang D, Xu Q, Cheng J, Lu X, Zhang H (2012) Electrokinetic remediation and its combined technologies for removal of organic pollutants from contaminated soils. Int J Electrochem Sci 7:4528–4544

    CAS  Google Scholar 

  • Huq SMI, Rahman A, Sultana N, Naidu R (2003) Extent and severity of arsenic contamination in soils of Bangladesh. In: Feroze AM, Ashraf AM, Adeel Z (eds) Fate of arsenic in the nvironment. ITN Centre, Dhaka, Bangladesh

    Google Scholar 

  • Hussein H, Farag S, Kandil K, Moawad H (2005) Resistance and uptake of heavy metals by pseudomonas. Process Biochem 40:955–961

    Article  CAS  Google Scholar 

  • IAEA (1999) Technologies for remediation of radioactively contaminated sites. Waste Technology Section, International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (2003) Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation, Technical Reports Series No. 419, International Atomic Energy Agency, Vienna

    Google Scholar 

  • Iannelli R, Masi M, Ceccarini A, Ostuni MB, Lageman R, Muntoni A, Spiga D, Polettini A, Marini A, Pomi R (2015) Electrokinetic remediation of metal-polluted marine sediments: experimental investigation for plant design. Electrochim Acta 181:146–159

    Article  CAS  Google Scholar 

  • Igwe JC, Nnorom IC, Gbaruko BC (2005) Kinetics of radionuclides and heavy metals behaviour in soils: implications for plant growth. Afr J Biotechnol 4(13):1541–1547

    CAS  Google Scholar 

  • International Committee of the Red Cross (2011) Management of medical wastes. ICRC, Geneva

    Google Scholar 

  • Inui H, Shiota N, Motoi Y, Ido Y, Inoue T, Kodama T, Ohkawa Y, Ohkawa H (2001) Metabolism of herbicides and other chemicals in human cytochrome P450 species and in transgenic potato plants co-expressing human CYP1A1, CYP2B6 and CYP2C19. J Pest Sci 26:28–40

    Article  CAS  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92(1):1–8

    Article  CAS  Google Scholar 

  • IWW (2014) Global occurrence of pharmaceuticals in the environment: results of a global database of Measured Environmental Concentrations (MEC), Presentation by Weber FA on the Geneva conference on Pharmaceuticals in the Environment, 8th–9th April 2014, IWW Water Centre, Germany

    Google Scholar 

  • Jaffré T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a Hyperaccumulator of nickel from New Caledonia. Science 193(4253):579–580

    Article  Google Scholar 

  • Jhee EM, Boyd RS, Eubanks MD (2005) Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode. New Phytol 168:331–343

    Article  CAS  Google Scholar 

  • Jiang W, Tao T, Liao Z (2011) Removal of heavy metal from contaminated soil with chelating agents. Open Journal of Soil Science 1:70–76

    Article  CAS  Google Scholar 

  • Juhasz AL, Stanley GA, Britz ML (2000) Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett Appl Microbiol 30:396–401

    Article  CAS  Google Scholar 

  • Juhasz AL, Stanley GA, Britz ML (2002) Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a,h]anthracene by Stenotrophomonas maltophilia VUN 10,003. J Ind Microbiol Biotechnol 28:88–96

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Kabata-Pendias A, Pendias H (2000) Trace elements in soil and plants. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kanaly RA, Harayama S, Watanabe K (2002) Rhodanobacter sp. strain BPC-1 in a benzo[a]pyrene-mineralizing bacterial consortium. Appl Environ Microbiol 68:5826–5833

    Article  CAS  Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36:1129–1139

    Article  CAS  Google Scholar 

  • Karthika N, Jananee K, Murugaiyan V (2016) Remediation of contaminated soil using soil washing-a review. Int J Eng Res Appl 6(1) (Part - 2): 13–18

    Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2007) Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol Adv 25:75–84

    Article  CAS  Google Scholar 

  • Kay P, Boxsall AB (2000) Environmental risk assessment of veterinary medicines in slurry; SSLRC contract JF 611OZ. Cranfield University, Cranfield, UK

    Google Scholar 

  • Kazunga C, Aitken MD (2000) Products from the incomplete metabolism of pyrene by polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol 66:1917–1922

    Article  CAS  Google Scholar 

  • Keeling SM, Stewart RB, Anderson CW, Robison BH (2003) Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation. Int J Phytoremediation 5:235–244

    Article  CAS  Google Scholar 

  • Kelly JJ, Haggblom MM, Tate RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipids fatty acid profiles. Biol Fertil Soils 38:65–71

    Article  CAS  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13

    Article  CAS  Google Scholar 

  • Kensa VM (2011) Bioremediation – an overview. J Industrial Pollution Control 27(2):161–168

    CAS  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  CAS  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152(3):686–692

    Article  CAS  Google Scholar 

  • Kim D, Park MJ, Koh SC, So JS, Kim E (2002) Three separate pathways for the initial oxidation of limonene, biphenyl, and phenol by Rhodococcus sp strain t104. J Microbiol 40:86–89

    CAS  Google Scholar 

  • Kim YH, Freeman JP (2005) Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 67:275–285

    Article  CAS  Google Scholar 

  • Kim SJ, Kweon O, Freeman JP, Jones RC, Adjei MD, Jhoo JW, Edmondson RD, Cerniglia CE (2006) Molecular cloning and expression of genes encoding a novel dioxygenase involved in low- and high-molecular-weight polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Appl Environ Microbiol 72:1045–1054

    Article  CAS  Google Scholar 

  • King-Heiden TC, Mehta V, Xiong KM, Lanham KA, Antkiewicz DS Ganser A, Peterson RE (2012) Reproductive and developmental toxicity of dioxin in fish. Mol Cell Endocrinol 354:121–138

    Article  CAS  Google Scholar 

  • Kirpichtchikova TA, Manceau A, Spadini L, Panfili F, Marcus MA, Jacquet T (2006) Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling. Geochim Cosmochim Acta 70(9):2163–2190

    Article  CAS  Google Scholar 

  • Kjøller AH, Struwe S (2002) Fungal communities, succession, enzymes, and decomposition. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York

    Google Scholar 

  • Knox AS, Seamans JC, Mench MJ, Vangronseveld J (2000) Remediation of metals and radionuclides: contaminated soil using in situ stabilization techniques. Macmillan Publishers, New York

    Google Scholar 

  • Koller K, Brown T, Spurgeon A, Levy L (2004) Recent developments in low-level lead exposure and intellectual impairment in children. Environ Health Perspect 112:987–994

    Article  CAS  Google Scholar 

  • Kolpin DW, Riley D, Meyer MT, Weyer P, Thurman EM (2000) Pharm-Chemical contamination: Recconnaissance for antibiotics in Iwoa streams 1999. Proceeding, effects of animal feeding operations on water resources and the environment. Wilde FD, Britton LJ, Miller CV, Kolpin DW (eds) US Geological Survey Open File Report 00-204, US Geological Survey, Reston, Virginia

    Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Re Plant Biol 61:517–534

    Article  CAS  Google Scholar 

  • Kubota H, Takenaka C (2003) Arabis gemmifera is a hyperaccumulator of cd and Zn. Int J Phytoremediation 5:197–201

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  Google Scholar 

  • Kupper H, Mijovilovich A, Gotz B, Kupper FC, Meyer-Klaucke W (2009) Complexation and toxicity of copper in higher plants (I): characterisation of copper accumulation, speciation and toxicity in Crassula helmsii as a new copper hyperaccumulator. Plant Physiol 151:702–714

    Article  CAS  Google Scholar 

  • Küpper H, Parameswaran A, Leitenmaier B, Trtilek M, Setlik I (2007) Cadmium induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175:655–674

    Article  Google Scholar 

  • Lanno RP, Wells J, Conder JM, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf 57(1):39–47

    Article  CAS  Google Scholar 

  • Leblanc M, Petit D, Deram A, Robinson B, Brooks RR (1999) The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Econ Geol 94:109–113

    Article  CAS  Google Scholar 

  • Lee SE, Seo JS, Keum YS, Lee KJ, Li QX (2007) Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14. Proteomics 7:2059–2069

    Article  CAS  Google Scholar 

  • Lestan D (2006) Enhanced heavy metal phytoextraction. In: Phytoremediation Rhizoremediation. Springer, The Netherlands, pp 115–132

    Chapter  Google Scholar 

  • Levine et al. 2006 cited from Mbhele PP (2007) Remediation of soil and water contaminated by heavy metals and hydrocarbons using silica encapsulation. M. S. Thesis, University of the Witwatersrand, Johannesburg

    Google Scholar 

  • Li L, Xu ZR, Zhang C, Bao J, Dai X (2012) Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge. Bioresour Technol 121:169–175

    Article  CAS  Google Scholar 

  • Li LY (2007) Remediation treatment technologies: reference guide for developing countries facing persistent organic pollutants. Published by United Nations Industrial Development Organization (UNIDO), Vienna

    Google Scholar 

  • Li Q, Jiang Y, Liang WJ (2006) Effect of heavy metals on soil nematode communities in the vicinity of a metallurgical factory. J Environ Sci 18:323–328

    CAS  Google Scholar 

  • Liang W, Li Q, Zhang X, Jiang S, Jiang Y (2006) Effect of heavy metals on soil nematode community structure in Shenyang suburbs. American-urasian J Agric & Environ Sci 1(1):14–18

    Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy-metal contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  CAS  Google Scholar 

  • Lu L, Tian S, Zhang J, Yang X, Labavitch JM, Webb SM, Latimer M, Brown PH (2013) Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii. New Phytol 198:721–731

    Article  CAS  Google Scholar 

  • Lu XC, Chen LH, Xu Q, Bi SP, Zheng Z (2005) China J Environ Sci (Chinese) 25:89–91

    Google Scholar 

  • Luo YM (2009) Current Research and Development in soil remediation technologies. Progress in. Chemistry 21:558–565

    CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soil. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Madyiwa S, Chimbari M, Nyamangara J, Bangira C (2002) Cumulative effects of sewage sludge and effluent mixture application on soil properties of sandy soil under a mixture of star and kikuyu grasses Zimbabwe. Phys Chem Earth 27:747–753

    Article  Google Scholar 

  • Mahajan MC, Phale PS, Vaidyanathan CS (1994) Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86. Arch Microbiol 161:425–433

    Article  CAS  Google Scholar 

  • Mahendran RP (2014) Phytoremediation – insights into plants as remedies. Malaya J Biosci 1(1):41–45

    CAS  Google Scholar 

  • Mallampati SR, Mitoma Y, Okuda T, Sakita S, Kakeda M (2013) Novel approach for the remediation of radioactive cesium contaminated soil with nano-Fe/Ca/CaO dispersion mixture in dry condition. E3S Web of Conferences 1, 08003 (2013), DOI: https://doi.org/10.1051/e3sconf/20130108003., http://www.e3s-conferences.org

    Article  Google Scholar 

  • Mallick S, Chatterjee S, Dutta TK (2007) A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology 153:2104–2115

    Article  CAS  Google Scholar 

  • Marcel van der Perk M (2013) Soil and water contamination, 2nd edn. CRC Press, Hoboken

    Google Scholar 

  • Marcel van der Perk M (2006) Soil and water contamination. Taylor and Francis, London

    Book  Google Scholar 

  • Marco-Urrea E, Reddy CA (2012) Degradation of Chloro-organic pollutants by white rot fungi. In: Singh SN (ed) Microbial degradation of xenobiotics, environmental science and engineering. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Markus J, McBratney AB (2001) A review of the contamination of soil with lead II. Spatial distribution and risk assessment of soil lead. Environ Int 27(5):399–411

    Article  CAS  Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39(8):622–654

    Article  CAS  Google Scholar 

  • Masayuki S, Aya W, Masahiro I, Sakae S, Toshikazu K (2007) Phytoextraction and phytovolatilization of arsenic from as-contaminated soils by Pteris vittata. Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy: Vol. 12, Article 26

    Google Scholar 

  • Master ER, Lai VWM, Kuipers B, Cullen WR, Mohn WM (2002) Sequential anaerobic-aerobic treatment of soil contaminated with weathered aroclor 1260. Environ Sci Technol 36:100–103

    Article  CAS  Google Scholar 

  • Master ER, Mohn WW (2001) Induction of bphA, encoding biphenyl dioxygenase, in two polychlorinated biphenyl-degrading bacteria, psychrotolerant pseudomonas strain cam-1 and mesophilic Burkholderia strain lb400. Appl Environ Microbiol 67:2669–2676

    Article  CAS  Google Scholar 

  • Mata-Sandoval J, Karns J, Torrent A (2002) Influence of rhamnolipids and triton X-100 on the desorption of pesticides from soils. Environ Sci Technol 36:4669–4675

    Article  Google Scholar 

  • Matschullat J (2000) Arsenic in the geosphere--a review. Sci Total Environ 249:297–312

    Article  CAS  Google Scholar 

  • Matsubara T, Ohshiro T, Nishina Y, Izumi Y (2001) Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol 67:1179–1184

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Dunham SJ, Crosland AR, Coleman K (2000) Long-term changes in extractability and bioavailability of zinc and cadmium after sludge application. J Environ Qual 29:875–883

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Biotechnol 14:277–282

    Article  CAS  Google Scholar 

  • McGowen SL, Basta NT, Brown GO (2001) Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J Environ Qual 30:493–500

    Article  CAS  Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 201–219

    Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  Google Scholar 

  • Mengoni A, Gonnelli C, Hakvoort HWJ, Galardi F, Bazzicalupo M, Gabbrielli R, Schat H (2003) Evolution of copper-tolerance and increased xpression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant Soil 257:451–457

    Article  CAS  Google Scholar 

  • Mihalik J, Henner P, Frelon S, Camilleri V, Fevrier L (2012) Citrate assisted phytoextraction of uranium by sunflowers: study of fluxes in soils and plants and resulting intra-planta distribution of Fe and U. Environ Exp Bot 77:249–258

    Article  CAS  Google Scholar 

  • Miller CD, Hall K, Liang Y-N, Nieman K, Sorensen D, Issa B, Anderson AJ, Sims RC (2004) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading mycobacterium isolates from soil. Microb Ecol 48:230–238

    Article  CAS  Google Scholar 

  • Millward RN, Bridges TS, Ghosh U, Zimmerman JR, Luthy RG (2005) Addition of activated carbon to sediments to reduce PCB bioaccumulation by a polychaete (Neanthes arenaceodentata) and an amphipod (Leptocheirus plumulosus). Environ Sci Technol 39:2880–2887

    Article  CAS  Google Scholar 

  • Mohammed FA (2009) Pollution caused by vehicle exhausts and oil trash burning in Kirkuk city. Iraqi Journal of Earth Sciences 9(2):39–48

    Google Scholar 

  • Momani KA, Jiries AG, Jaradat QM (2000) Atmospheric deposition of Pb, Zn, cu, and cd in Amman, Jordan. Turk J Chem 24:231–237

    CAS  Google Scholar 

  • Mongkhonsin B, Nakbanpote W, Nakai I, Hokura A, Jiyaranaikoon N (2011) Distribution and speciation of chromium accumulated in Gynura pseudochina (L.) DC. Environ Exp Bot 74:56–64

    Article  CAS  Google Scholar 

  • Montemurro F, Convertini G, Ferri D, Maiorana M (2005) MSW compost application on tomato crops in Mediterranean conditions: effects on agronomic performance and nitrogen utilization. Compost Science & Utilization 13(4):234–242

    Article  Google Scholar 

  • Moon DH, Park J-W, Koutsospyros A, Cheong KH, Chang Y-Y, Baek K, Jo R, Park J-H (2016) Assessment of soil washing for simultaneous removal of heavy metals and low-level petroleum hydrocarbons using various washing solutions. Environ Earth Sci 75:884

    Article  CAS  Google Scholar 

  • Moradi AB, Swoboda S, Robinson B, Prohaska T, Kaestner A, Oswald SE, Wenzel WW, Schulin R (2010) Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP–MS. Environ Exp Bot 69:24–31

    Article  CAS  Google Scholar 

  • Moreno JL, Hernandez T, Garcia C (1999) Effects of cadmium - contaminated sewage sludge compost on dynamics of organic matter and microbial activity in an aird soil. Biol Fertil Soils 28:230

    Article  CAS  Google Scholar 

  • Mougin C, Kollmann A, Jolivalt C (2002) Enhanced production of laccase in thefungus Trametes versicolor by the addition of xenobiotics. Biotechnol Lett 24:139–142

    Article  CAS  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A (2010a) Heavy metals in plants: phytoremediation: plants used to remediate heavy metal pollution. Agric Biol J North America Science Huβ. http://www.scihub.org/abjna

  • Mudgal V, Madaan N, Mudgal A, Singh RB, Mishra S (2010b) Effect of toxic metals on human health. The Open Nutraceuticals Journal 3:94–99

    CAS  Google Scholar 

  • Muegge J (2008) An assessment of zero valence iron permeable reactive barrier projects in California. Document No 1229. Office of Pollution Prevention and Technology Development, California

    Google Scholar 

  • Mueller JG, Chapman PJ, Blattmann BO, Pritchard PH (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl Environ Microbiol 56:1079–1086

    CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Nam IH, Kim YM, Schmidt S, Chang YS (2006) Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo-p- dioxin by Sphingomonas wittichii strain RW1. Appl Environ Microbiol 72:112–116

    Article  CAS  Google Scholar 

  • Naranjo L, Urbina H, De Sisto A, Leon V (2007) Isolation of autochthonous non-white rot fungi with potential for enzymatic degrading of Venezuelan extra-heavy crude oil. Biocatal Biotransformation 25(2–4):341–349

    Article  CAS  Google Scholar 

  • Navarro S, Vela N, Navarro G (2007) Review. An overview on the environmental behaviour of pesticide residues in soils. Span J Agric Res 5(3):357–375

    Article  Google Scholar 

  • Navas A, Flores-Romero P, Sánchez-Moreno S, Camargo JA, McGawley EC (2010) Effects of heavy metal soil pollution on nematode communities after the Azancollar mining spill. Nematropica 40(1):13–28

    Google Scholar 

  • Nicell JA (2001) Environmental applications of enzymes. Interdisc. Environ Rev 3:14–41

    Google Scholar 

  • Nichols GE et al (2014) Phytoremediation of a petroleum-hydrocarbon contaminated Shallow Aquifer in Elizabeth city. Wiley online library, North Carolina

    Google Scholar 

  • Nicholson FA, Chambers BJ, Williams JR, Unwin RJ (1999) Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour Technol 70:23–31

    Article  CAS  Google Scholar 

  • Njoku KL, Akinola MO, Oboh BO (2009) Phytoremediation of crude oil contaminated soil: the effect of growth of Glycine max on the physico-chemistry and crude oil contents of soil. Nature and Science 7(10):79–86

    Google Scholar 

  • Nkansah MA, Amoako CO (2010) Heavy metal content of some common spices available in markets in the Kumasi metropolis of Ghana. Am J Sci Ind Res 1(2):158–163

    Google Scholar 

  • Nwoko CW (2010) Trends in phytoremediation of toxic elemental and organic pollutants. Afr J Biotechnol 9(37):6010–6016

    CAS  Google Scholar 

  • O’Mahony M, Dobson A, Barnes J, Singleton I (2006) The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere 63:307–314

    Article  CAS  Google Scholar 

  • Onianwa PC, Odukoya OO, Alabi HA (2002) Chemical composition of wet precipitation in Madan, Nigeria. Bull Chem Soc Ethiop 16(2):41–147

    Google Scholar 

  • Orser CS, Salt DE, Pickering IJ, Prince R, Epstein A, Ensley BD (1999) Brassica plants to provide enhanced human mineral nutrition: selenium phytoenrichment and metabolic transformation. J Med Food 1:253–261

    Article  Google Scholar 

  • Osman KT, Kashem MA (2016) Phytoremediation of soil. In: Lal R (ed) Encyclopedia of soil science, 3rd edn. Taylor and Francis. https://doi.org/10.1081/E-ESS3-120053533

    Chapter  Google Scholar 

  • Ostermann A, Gao J, Welp G, Siemens J, Roelcke M, Heimann L, Nieder R, Xue Q, Lin X, Sandhage-Hofmann A, Amelung W (2014) Identification of soil contamination hotspots with veterinary antibiotics using heavy metal concentrations and leaching data – a field study in China. Environ Monit Assess 186:1–15

    Article  CAS  Google Scholar 

  • Oustan S, Heidari S, Neyshabouri MR, Reyhanitabar A, Bybordi A (2011) Removal of heavy metals from a contaminated calcareous soil using oxalic and acetic acids as chelating agents. 2011 International Conference on Environment Science and Engineering IPCBEE vol.8 (2011) IACSIT Press, Singapore

    Google Scholar 

  • Oven M, Grill E, Golan-Goldhirsh A, Kutchan TM, Zenk MH (2002) Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry 60:467–474

    Article  CAS  Google Scholar 

  • Page V, Schwitzguébel JP (2009) The role of cytochromes P450 and peroxidases in the detoxification of sulphonated anthraquinones by rhubarb and common sorrel plants cultivated under hydroponic conditions. Environ Sci Pollut Res Int 16:805–816

    Article  CAS  Google Scholar 

  • Paulsrud B, Wien A, Nedland KT (2000) A survey of toxc organics in Norwegian sewage sludge, compost and manure. Aquateam, Norwegian Water Technology Centre ASOSLO

    Google Scholar 

  • Pavel LV, Gavrilescu M (2008) Overview of ex situ decontamination techniques for soil cleanup. Environ Eng Manag J 7(6):815–834

    Article  Google Scholar 

  • Pawlowska TE, Charvat I (2004) Heavy metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70(11):6643–6649

    Article  CAS  Google Scholar 

  • Pedro JS, Valente S, Padilha PM, Florentino AO (2006) Studies in the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2. Chemosphere 64:1128–1133

    Article  CAS  Google Scholar 

  • Pensaert S, De Groeve S, Staveley C, De Puydt S (2008) Immobilisation, stabilisation, solidification: a new approach for the treatment of contaminated soils. Case studies: London Olympics & Total Ertvelde. 15de Innovatieforum Geotechniek – 8 oktober 2008, Belgium

    Google Scholar 

  • Perelo LW (2010) In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1–3):81–89

    Article  CAS  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi geosingense. Proc Nat Acad Sci USA 98:9995–10000

    Article  CAS  Google Scholar 

  • Petruzzelli G, Gorini F, Pezzarossa B, Pedron F (2010) The fate of pollutants in soil. In: Bianchi F, Cori L, Moretti PF (eds) CNR Environment and Health Inter-departmental Project. Consiglio Nazionale delle Ricerche – Roma

    Google Scholar 

  • Pierpoint AC, Hapeman CJ, Torrents A (2003) Ozone treatment of soil contaminated with aniline and trifluralin. Chemosphere 50:1025–1034

    Article  CAS  Google Scholar 

  • Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T (2000) Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191:115–121

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  Google Scholar 

  • Pokhrel D, Viraraghavan T (2005) Municipal solid waste management in Nepal: practices and challenges. Waste Manag 25(5):555–562

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136

    CAS  Google Scholar 

  • Prescott LM, Harley JP, Klein DA (2002) Microbiology, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Pumphrey GM, Madsen EL (2007) Naphthalene metabolism and growth inhibition by naphthalene in Polaromonas naphthalenivorans strain CJ2. Microbiology 153:3730–3738

    Article  CAS  Google Scholar 

  • Rababah A, Matsuzawa S (2002) Treatment system for solid matrix contaminated with fluoranthene. I – modified extraction technique. Chemosphere 46(1):39–47

    Article  CAS  Google Scholar 

  • Ramirez N, Cutright T, Ju LK (2001) Pyrene biodegradation in aqueous solutions and soil slurries by Mycobacterium PYR-1 and enriched consortium. Chemosphere 44:1079–1086

    Article  CAS  Google Scholar 

  • Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3):333–353

    Article  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons, New York

    Google Scholar 

  • Raychoudhury T, Scheytt T (2013) Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review. Water Sci Technol 68(7):1425–1439

    Article  CAS  Google Scholar 

  • Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, London

    Google Scholar 

  • Reddy KR (2010) Nanotechnology for site remediation: Dehalogenation of organic pollutants in soils and groundwater by nanoscale iron particles. 6th International Congress on Environmental Geotechnics, New Delhi

    Google Scholar 

  • Reddy KR (2013) Electrokinetic remediation of soils at complex contaminated sites: technology status, challenges, and opportunities. In: Manassero et al (eds) Coupled phenomena in environmental geotechnics. Taylor & Francis Group, London

    Chapter  Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds), Phytoremediation of metal-contaminated soils, NATO Science Series: IV: Earth and environmental sciences, Springer, New York

    Google Scholar 

  • Reeves RD, Adiguzel N, Baker AJM (2009) Nickel hyperaccumulation in Bornmuellera kiyakii and associated plants of the Brassicaceae from Kizildaay Derebucak (Konya), Turkey. Turk J Bot 33:33–40

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley, New York

    Google Scholar 

  • Rentz JA, Alvarez PJJ, Schnoor JL (2008) Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02. Environ Pollut 151:669–677

    Article  CAS  Google Scholar 

  • Resnick SM, Gibson DT (1996) Regio- and stereospecific oxidation of fluorene, dibenzofuran, and dibenzothiophene by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816–4. Appl. Environ Microbiol 62:4073–4080

    CAS  Google Scholar 

  • Romero MC, Cazau MC, Giorgieri S, Arambarri AM (1998) Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ Pollut 101:355–359

    Article  CAS  Google Scholar 

  • Roper JC, Dec J, Bollag J (1996) Using minced horseradish roots for the treatment of polluted waters. J Environ Qual 25:1242–1247

    Article  CAS  Google Scholar 

  • Rubilar O, Feijoo G, Diez MC, LuChau TA, Moreira MT, Lema JM (2007) Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkandera adusta and Anthracophyllum discolor. Indust Engin Chem Res 46:744–751

    Article  CAS  Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    Article  Google Scholar 

  • Saichek RE, Reddy KR (2005) Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: a review. Crit Rev Environ Sci Technol 35:115–192

    Article  CAS  Google Scholar 

  • Santos EE, Lauria DC, Porto da Silveira CL (2004) Assessment of daily intake of trace elements due to consumption of foodstuffs by adult inhabitants of Rio de Janeiro city. Sci Total Environ 327:69–79

    Article  CAS  Google Scholar 

  • Saruhan V, Gul I, Aydin I (2010) The effects of sewage sludge used as fertilizer on agronomic and chemical features of bird’s foot trefoil (Lotus corniculatus L.) and soil pollution. Sci Res Essays 5(17):2567–2573

    Google Scholar 

  • Saveyn H, Eder P (2014) End-of-waste criteria for biodegradable waste subjected to biological treatment (compost & digestate): Technical proposal. EC JRC Scientific and Policy Reports (EUR 26425 EN)

    Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19

    CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Schoof RA (2003) Guide for incorporating bioavailability adjustments into human health and ecological risk assessments part 1: overview of metals bioavailability, Tri-Service Ecological Risk Assessment, NFESC, AFCEE, AEC, USA

    Google Scholar 

  • Schroder P, Harvey PJ, Scwitzguebel JP (2002) Prospects for the phytoremediation of organic pollutants in Europe. Environ Sci Pollut Res 9(1):1–3

    Article  CAS  Google Scholar 

  • Schwitzguébel JP, van der Lelie D, Baker A, Glass DJ, Vangronsveld J (2002) Phytoremediation: European and American trends. J Soils Sediments 2(2):91–99

    Article  Google Scholar 

  • Semple KT, Morriss AWJ, Paton GI (2003) Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. Eur J Soil Sci 54:809–818

    Article  CAS  Google Scholar 

  • Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6(1):278–309

    Article  CAS  Google Scholar 

  • Sepic E, Leskovsek H (1999) Isolation and identification of fluoranthene biodegradation products. Analyst 124:1765–1769

    Article  CAS  Google Scholar 

  • Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51(4):618–634

    Article  CAS  Google Scholar 

  • Sharma HD, Reddy KR (2004) Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. John Wiley, Hoboken

    Google Scholar 

  • Shi C, Fernandez-Jimenez A (2006) Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J Hazard Mater B137:1656–1663

    Article  CAS  Google Scholar 

  • Shukla KP, Singh NK, Sharma S (2010) Bioremediation: developments, current practices and perspectives. Gen Eng Biotechnol J 3:1–20

    CAS  Google Scholar 

  • Siegel FR (2002) Environmental geochemistry of potentially toxic metals. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  • Sikka SC, Wang R (2008) Endocrine disruptors and estrogenic effects on male reproductive axis. Asian J Androl 10:134

    Article  CAS  Google Scholar 

  • Singer AC, Bell T, Heywood CA, Smith JAC, Thompson IP (2007) Phytoremediation of mixed contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel. Environ Pollut 147:74–82

    Article  CAS  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    Article  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. John Wiley & Sons, London

    Book  Google Scholar 

  • Singh S, Jawaid SMA, Deep S (2014) Heavy metal removal from contaminated soil by soil washing – a review. GJESR Review Paper 1(8):11–15

    Google Scholar 

  • Sinha RK, Valani D, Sinha S, Singh S, Heart S (2009) Bioremediation of contaminated sites: a low cost nature’s biotechnology for environmental clean up by versatile microbes, plants and earthworms. In: Faerber T, Herzog J (eds) Solid waste management and environmental remediation. Nova Science Publishers Inc, Hauppauge, N.Y

    Google Scholar 

  • Siuta J (1999) Sposoby przyrodniczego uzytkowania osadow sciekowych. In: Siuta J, Miluniec R (eds) Przyrodnicze uzytkowanie osadow sciekowych, Swinoujscie

    Google Scholar 

  • Sivaci A, Elmas E, Gumu F, Sivaci ER (2008) Removal of cadmium by Myrophyllum heterophyllum Michx and Potamogeton crispus L. and its effect on pigments and total phenolic compounds. Arch Environ Contam Toxicol 54:612–618

    Article  CAS  Google Scholar 

  • Smol M, Włodarczyk-Makuła M, Włóka D (2014) The effectiveness adsorption of carcinogenic PAHs on mineral and on organic sorbents. Zeszyty Naukowe Wyzszej Szkoly Zarzadzania Ochrona Pracy W Katowicach 1(10):5–16

    Google Scholar 

  • Smolders E (2001) Cadmium uptake by plants. Int J Occup Med Environ Health 14(2):177–183

    CAS  Google Scholar 

  • Stegmann R, Brunner G, Calmano W, Matz G (2001) Treatment of contaminated soil: fundamentals, analysis, applications. Springer, New York

    Book  Google Scholar 

  • Stojanovic M, Lopicic Z, Mihajlovic M, Petrovic M, Radulovic D, Milojkovic J (2013) New uranium remediation approach based on mineral row materials and phytoaccumulator. Acta Technica Coviniensis – Bulletin of Engineering, Fascicule 3:31–35

    Google Scholar 

  • Sun HQ, Liu GX, Wei ZH, Yang WW (2014) Removal of heavy metals from contaminated soils by washing with citric acid and subsequent treatment of soil-washing solutions. Adv Mater Res 937:646–651

    Article  Google Scholar 

  • Sun R, Jin C, Zhou Q (2010) Characteristics of cadmium accumulation and tolerance in Rorippa globosa (Turcz.) Thell., a species with some characteristicsof cadmium hyperaccumulation. Plant Growth Regul 61:67–74

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q, Wang L, Liu W (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential cd-hyperaccumulator. J Hazard Mater 161:808–814

    Article  CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation – a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Szymański K, Janowska B, Jastrzębski P (2011) Heavy metal compounds in wastewater and sewage sludge. Annu set. Environ Prot 13:83–100

    Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates Inc, Mass, Sunderland

    Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenite resistance in Arabidopsis. Plant Physiol 146:1219–1230

    Article  CAS  Google Scholar 

  • Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925

    Article  CAS  Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35:3397–3406

    Article  CAS  Google Scholar 

  • Torre DL, Iglesias A, Carballo I, Ramírez P, Muñoz MJ (2012) An approach for mapping the vulnerability of European Union soils to antibiotic contamination. Sci Total Environ 414:672–679

    Article  CAS  Google Scholar 

  • Tortella G, Diez MC, Durán N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212

    Article  CAS  Google Scholar 

  • Tortella G, Rubilar O, Valenzuela E, Gianfreda L, Diez MC (2008) Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World J Microb Biot 24:2805–2818

    Article  CAS  Google Scholar 

  • Trakal L, Neuberg M, Tlustoš P, Száková J, Tejnecký V, Drábek O (2011) Dolomite limestone application as a chemical immobilization of metal-contaminated soil. Plant Soil Environ 57(4):173–179

    Article  CAS  Google Scholar 

  • Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soils & Sediments 1:1–7

    Article  Google Scholar 

  • Traunfeld JH, Clement DL (2001) Lead in garden soils. Home and Garden. Maryland Cooperative Extention, University of Maryland, 2001. http://www.hgic.umd.edu/_media/documents/hg18.pdf

  • Truu J, Truu M, Espenberg M, Nõlvaka H, Juhanson J (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. The Open Biotechnology Journal 9(Suppl 1-M9):85–92

    Article  Google Scholar 

  • Tsai YA, Mao F, Chi KH, Chang MB, Feng CC, Lin CH, Hung PC, Chen ML (2014) Health risk from exposure to PCDD/fs from a Waelz Plant in Central Taiwan. Aerosol Air Qual Res 14:1310–1319

    Article  CAS  Google Scholar 

  • Turgut C, Pepe MK, Cutright TJ (2004) The effect ofEDTA and citric acid on phytoremediation of Pb, Cr,and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154

    Article  CAS  Google Scholar 

  • Umlauf G, Christoph EH, Lanzini L, Savolainen R, Skejo H, Bidoglio G, Clemens J, Goldbach H, Scherer H (2011) PCDD/F and dioxin-like PCB profiles in soils amended with sewage sludge, compost, farmyard manure, and mineral fertilizer since 1962. Environ Sci Pollut Res Int 18:461–470

    Article  CAS  Google Scholar 

  • USDA (2003) Zinc in foods-draft for comments. Foreign Agricultural Service (GAIN Report) # CH3043, Peoples Republic of China

    Google Scholar 

  • USEPA (2000) Introduction to phytoremediation. EPA 600/R-99/107, United States Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA

    Google Scholar 

  • USEPA (2001) A citizen’s guide to vitrification. United States Office of Solid Waste and EPA 542-F-01-017 Environmental Protection Emergency Response December 2001 Agency (5102G)

    Google Scholar 

  • USEPA (2016) Current and emerging Post-Fukushima technologies, and techniques, and practices for wide area radiological survey, remediation, and waste management. National Homeland Security Research Center, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC

    Google Scholar 

  • Valentın L, Nousiainen A, Mikkonen A (2013) Introduction to organic contaminants in soil: concepts and risks. In: Vincent T et al. (eds) Emerging organic contaminants in sludges: analysis, fate and biological treatment. Hdb Env Chem,24:1–30

    Google Scholar 

  • Van Ginneken L, Meers E, Guisson R et al (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landsc Manag 15(4):227–236

    Google Scholar 

  • van Herwijnen R, Springael D, Slot P, Govers HAJ, Parsons JR (2003) Degradation of anthracene by Mycobacterium sp. strain LB501T proceeds via a novel pathway, through o-phthalic acid. Appl Environ Microbiol 69:186–190

    Article  CAS  Google Scholar 

  • Van Hoof NALM, Hassinen VH, Hakvoort HWJ, Ballintijn KF, Schat H, Verkleij JAC, Earnst WHO, Karenlampi SO, Tervahauta AI (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol 126:1519–1526

    Article  Google Scholar 

  • Vandenhove H, et al. (2000) Investigation of a possible basis for a common approach with regard to the restoration of areas affected by lasting radiation exposure as a result of past or old practice or work activity — CARE, Radiation Protection 115, Final Report to the European Commission. http://europa.eu.int/comm/energy/nuclear/radioprotection/

  • Vasilyeva GK, Strijakova ER, Shea PJ (2006) Use of activated carbon for soil remediation. In: Twardowska et al (eds) Water pollution monitoring, protection and remediation. Springer, Dodrecht

    Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Viehweger K, Geipel G (2010) Uranium accumulation and tolerance in Arabidopsis halleri under native versus hydroponic conditions. Environ Exp Bot 69:39–46

    Article  CAS  Google Scholar 

  • Visioli G, Vincenzi S, Marmiroli M, Marmiroli N (2012) Correlation between phenotype and proteome in the Ni hyperaccumulator Noccaea caerulescens subsp. caerulescens. Environ Exp Bot 77:156–164

    Article  CAS  Google Scholar 

  • Vogel-Mikuš K, Pongrac P, Kump P, Necˇemer M, Regvar M (2006) Colonisation of a Zn, cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Pollut 139:362–371

    Article  CAS  Google Scholar 

  • Vos JG, Dybing E, Greim HA, Ladefoged O, Lambre´ C, Tarazona JV, Brandt I, Vethaak AD (2000) Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Crit Rev Toxicol 30:71

    Article  CAS  Google Scholar 

  • Walliwalagedara C, Atkinson I, van Keulen H, Cutright T, Wei R (2010) Differential expression of proteins induced by lead in the dwarf sunflower Helianthus annuus. Phytochemistry 71:1460–1465

    Article  CAS  Google Scholar 

  • Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the west pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10:1948–1963

    Article  CAS  Google Scholar 

  • Wang H, Zhong G (2011) Effect of organic ligands on accumulation of copper in hyperaccumulator Commelina communis. Biol Trace Elem Res 143:489–499

    Article  CAS  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    Article  CAS  Google Scholar 

  • Ward O, Singh A, Hamme JV (2003) Accelerated biodegradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30:260–270

    Article  CAS  Google Scholar 

  • Watanabe K, Kodoma Y, Stutsubo K, Harayama S (2001) Molecular characterization of bacterial populations in petroleum-contaminated ground water discharge from undergoing crude oil storage cavities. Appl Environ Microbiol 66:4803–4809

    Article  Google Scholar 

  • Watts RJ, Stanton PC, Howsawkeng J, Teel AL (2002) Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide. Water Res 36:4283–4292

    Article  CAS  Google Scholar 

  • Wei CY, Chen TB, Huang ZC, Zhang XQ (2002) Cretan brake-an arsenic-accumulating plant. Acta Ecol Sin 22:777–782

    Google Scholar 

  • Wei L, Luo C, Li X, Shen Z (2008) Copper accumulation and tolerance in Chrysanthemum coronarium L. and Sorghum sudanens L. Arch Environ Contam Toxicol 55:238–246

    Article  CAS  Google Scholar 

  • Weissenfels WD, Beyer M, Klein J (1990) Degradation of phenanthrene, fluorene, and fluoranthene by pure bacterial cultures. Appl Microbiol Biotechnol 32:479–484

    Article  CAS  Google Scholar 

  • Werle S, Dudziak M (2014) Analysis of organic and inorganic contaminants in dried sewage sludge and by-products of dried sewage sludge gasification. Energies 7:462–476

    Article  CAS  Google Scholar 

  • Wesp HF, Tang X, Edenharder R (2000) The influence of automobile exhausts on mutagenicity of soil: contamination with, fractionation, separation, and preliminary identification of mutagens in the salmonella/reversion assay and effects of solvent fractions on the sister-chromatid exchanges in human lymphocyte cultures and in the in vivo mouse bone marrow micronucleus assay. Mutat Res 472:1–21

    Article  CAS  Google Scholar 

  • West L (2014) Atrazine exposure has serious health consequences for animals and humans. Free Environmental Issues Newsletter http://environment.about.com/od/healthenvironment/a/How-Dangerous-Is-Atrazine.htm

  • White C, Sayer JA, Gadd GM (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical process for treatment of contamination. FEMS Microbiol Rev 20:503–516

    Article  CAS  Google Scholar 

  • Whiteley CG, Lee DJ (2006) Enzyme technology and biological remediation. Enzym Microb Technol 38:291–316

    Article  CAS  Google Scholar 

  • Wick AF, Haus NW, Sukkariyah BF, Haering KC, Daniels WL (2011) Remediation of PAH-contaminated soils and sediments: a literature review. Virginia Polytechnic Institute and State University Department of Crop and Soil Environmental Sciences Blacksburg, VA 24061, 102 pp, http://landrehab.org/

  • Wiren-Lehr S, Scheunert I, Dorfler U (2002) Mineralization of plant-incorporated residues of 14C-isoproturon in arable soils originating from different farming systems. Geoderma 105:351–366

    Article  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available atrategies for remediation. ISRN Ecology doi:https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Xi XY, Liu MY, Huang Y, Chen Y, Zhang Y (2010) Response of flue-cured tobacco plants to different concentration of lead or cadmium. 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). June, Chengdu, China

    Google Scholar 

  • Yamazoe A, Yagi O, Oyaizu H (2004) Degradation of polycyclic aromatic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1. Appl Microbiol Biotechnol 65:211–218

    Article  CAS  Google Scholar 

  • Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and cd in herbaceous grown on lead-zinc mining area in Yunnan,China. Environ Int 31:755–762

    Article  CAS  Google Scholar 

  • Yap CL, Gan S, Ng HK (2011) Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere 83:1414–1430

    Article  CAS  Google Scholar 

  • Yu MH (2005) Environmental toxicology- biological and health effects of pollutants, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665–671

    Article  CAS  Google Scholar 

  • Yun SW, Yu C (2015) Immobilization of Cd, Zn, and Pb from soil treated by limestone with variation of pH using a column test. Journal of Chemistry Article ID 641415, 8 pages, https://doi.org/10.1155/2015/641415

  • Zand E, Baghestani MA, Nezamabadi N, Shimi P (2010) Application guide of registered herbicides in Iran. Jihade-e-Daneshgahi Press, Mashhad, Iran

    Google Scholar 

  • Zeng X-W, Qiu R-L, Ying R-R, Tang Y-T, Tang L, Fang X-H (2011) The differentially-expressed proteome in Zn/cd hyperaccumulator Arabis paniculata Franch. In response to Zn and cd. Chemosphere 82:321–328

    Article  CAS  Google Scholar 

  • Zevenhoven R, Kilpinen P (2001) Control of pollutants in flue gases and fuel gases. Picaset Oy, Espoo. Chapter 8. http://users.abo.fi/rzevenho/gasbook.html

  • Zhang XH, Liu J, Huang HT, Chen J, Zhu YN, Wang DQ (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 67:1138–1143

    Article  CAS  Google Scholar 

  • Zhao L, Sun Y-L, Cui S-X, Chen M, Yang H-M, Liu H-M, Chai T-Y, Huang F (2011) Cd-induced changes in leaf proteome of the hyperaccumulator plant Phytolacca americana. Chemosphere 85:56–66

    Article  CAS  Google Scholar 

  • Zhou YY, Chen DZ, Zhu RY, Chen JM (2011) Substrate interactions during the biodegradation of BTEX and THF mixtures by pseudomonas oleovorans DT4. Bioresour Technol 102(12):6644–6649

    Article  CAS  Google Scholar 

  • Zhu YG, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41:121–128

    Article  CAS  Google Scholar 

  • Zvinowanda CM, Okonkwo JO, Shabalala PN, Agyei NM (2009) A novel adsorbent for heavy metal remediation in aqueous environments. Int J Environ Sci Tech 6(3):425–434

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Osman, K.T. (2018). Polluted Soils. In: Management of Soil Problems. Springer, Cham. https://doi.org/10.1007/978-3-319-75527-4_12

Download citation

Publish with us

Policies and ethics