Skip to main content

Modeling of Nanoflows

  • Chapter
  • First Online:
  • 856 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 118))

Abstract

By definition, nanoflows are flows in channels with a characteristic size (height of a plane channel or diameter of a cylindrical channel) smaller than (or equal to) one hundred nanometers. Depending on the cross-sectional configuration, nanochannels are usually classified as follows. A plane channel is a 2D channel and has only one nanosize (distance between the plates); it is also called a nanoslit. There are also cylindrical nanochannels (1D). Short cylindrical nanochannels are often called nanopores. These flows have been studied for about forty years. However, up to now, there were no algorithms that would permit us to model real nanoflows. In addition, in recent years, many new problems have appeared in this area. To solve these problems, we need correspondent techniques. In this chapter, we propose new molecular dynamics algorithms, which allow one to simulate a real plane Poiseuille-type flow characterized by a certain pressure gradient, and discuss specific features of plane flows in nanochannels. This is the subject of the first four sections of the chapter. In Sects. 5.5 and 5.6, the self-diffusion of the fluid molecules in nanochannel and in porous media is studied. Finally, the last section deals with modeling the separation of nanofluids through the use of nanomembranes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexeyev AA, Vinogradova OI (1996) Flow of a liquid in a nonuniformly hydrophobized capillary. Colloids Surf A 108:173–179

    Article  Google Scholar 

  • Andrienko D, Dünweg B, Vinogradova OI (2003) Boundary slip as a result of a prewetting transition. J Chem Phys 119:13106–13112

    Article  ADS  Google Scholar 

  • Andryushchenko V, Rudyak V (2011) Self-diffusion coefficient of molecular fluid in porous media. Defect Diffus Forum 312–315:417–422

    Article  Google Scholar 

  • Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:638–4663

    Article  Google Scholar 

  • Bitsanis I, Susan A, Somers SA, Davis HT, Tirrell M (1990) Microscopic dynamics of flow in molecularly narrow pores. J Chem Phys 93(5):3427–3236

    Article  ADS  Google Scholar 

  • Chen F, Mourhatch R, Tsotsis TT, Sahimi M (2008) Pore network model of transport and separation of binary gas mixture in nanoporous membranes. J Membr Sci 315:48–57

    Article  Google Scholar 

  • Cheng Y, Cory DG (1999) Multiple scattering by NMR. J Am Chem Soc 121:7935–7936

    Article  Google Scholar 

  • Dimov SV, Kuznetsov VV, Rudyak VY, Tropin NM (2012) Experimental investigation of microsuspension filtration in a highly-permeable porous medium. Fluid Dyn 47(2):178–185

    Article  ADS  Google Scholar 

  • Fan TH, Vinogradova OI (2005) Hydrodynamic resistance of close-approached slip surfaces with a nanoasperity or an entrapped nanobubble. Phys Rev E 72:066306

    Article  ADS  Google Scholar 

  • Heinbuch U, Fischer J (1989) Liquid flow in pores: slip, no-slip, or multilayer sticking. Phys Rev A 40:1144–1146

    Article  ADS  Google Scholar 

  • Jia W, Murad S (2005) Separation of gas mixtures using a range of zeolite membranes: a molecular-dynamics study. J Chem Phys 122:234708

    Article  ADS  Google Scholar 

  • Kärger J, Ruthven DM (1992) Diffusion in zeolites and over microporous solids. Wiley, New York

    Google Scholar 

  • Karnidakis G, Beskok A, Aluru N (2005) Microflows and nanoflows. Interdisciplinary applied mathematics, vol 29. Springer Science+Business Media, Berlin

    Google Scholar 

  • Kim KH (1998) Experimental measurement of restricted diffusion. Chem Ind Technol 16(6):562–567

    Google Scholar 

  • Koplik J, Banavar J, Willemsen J (1988) Molecular dynamics of Poiseuille flow and moving contact lines. Phys Rev Lett 60:1282–1285

    Article  ADS  Google Scholar 

  • Koplik J, Banavar JR, Willemsen JF (1989) Molecular dynamics of fluid flow at solid surfaces. Phys Fluids A 1:781–794

    Article  ADS  Google Scholar 

  • Koplik J, Vergeles M, Keblinski P, Banavar J (1996) Stokes drag and lubrication flows: a molecular dynamics study. Phys Rev E 53:4852–4864

    Article  ADS  Google Scholar 

  • Kozachok MV (2010) Equilibrium molecular dynamics and mean first passage time analysis of the separation of exhaust gases at high temperatures by silica nanoporous membranes. Model Simul Mater Sci Eng 18:025009

    Article  ADS  Google Scholar 

  • Latour LL, Mitra PP, Kleinberg RL, Sotak CH (1993) Time-dependent diffusion coefficient of fluids in porous media as a probe of surface-to-volume ratio. J Magn Reson A101:342–346

    Article  ADS  Google Scholar 

  • Lauga E, Brenner MP, Stone HA (2007) Microfluidics: the no-slip boundary condition. Handbook of experimental fluid dynamics, Ch 19. Springer, New York, pp 1219–1240

    Google Scholar 

  • Li D (eds) (2008) Encyclopedia of microfluidics and nanofluidics. Springer Science+Business Media, Berlin

    Google Scholar 

  • Nelson PH (2009) Pore-throat sizes in sandstones, tight sandstones, and shales. AAPG Bull 93(3):329–340

    Article  Google Scholar 

  • Ou J, Perot B, Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16(12):4635–4643

    Article  ADS  Google Scholar 

  • Rajabbeigi N, Tsotsis TT, Sahimi M (2009) Molecular pore-network model for nanoporous materials. II: application to transport and separation of gaseous mixtures in silicon-carbide membranes. J Membr Sci 345:323–330

    Article  Google Scholar 

  • Rudyak VY, Andryushchenko VA (2014) Molecular dynamics simulation of the nanofluid separation be means of nanomembrane. J Math Mech 4(30):88–94 (Vestnik of Tomsk State University)

    Google Scholar 

  • Rudyak VY, Belkin AA, Egorov VV, Ivanov DA (2008a) Modeling of plane flow with a pressure gradient in a nanochannel. In: Proceedings of 1st European conference on microfluidics, Universita di Bologna, Bologna, pp 263–272

    Google Scholar 

  • Rudyak VY, Belkin AA, Ivanov DA, Egorov VV (2008b) The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient. High Temp 46(1):30–39

    Article  Google Scholar 

  • Rudyak V, Belkin A, Egorov V, Ivanov D (2010) The characteristics and structure of plane Poiseuille type flow in a nanochannel. In: Proceedings of 2nd European conference on microfluidics (μFlu-24), SHF, Toulouse

    Google Scholar 

  • Rudyak V, Belkin A, Egorov V, Ivanov D (2011a) Modeling the flow in nanochannels by molecular dynamics method. Nanosystems Phys Chem Math 2(4):1–16

    Google Scholar 

  • Rudyak VY, Belkin AA, Egorov VV, Ivanov DA (2011b) About fluids structure in microchannels. Int J Multiphys 5(2):145–155

    Article  Google Scholar 

  • Song Y-Q, Ryu S, Sen PN (2000) Determining multiple length scales in rock. Nature 406:178–181

    Article  ADS  Google Scholar 

  • Soong CY, Yen TH, Tzeng PY (2007) Molecular dynamics simulation of nanochannels flows with effects of wall lattice-fluid interactions. Phys Rev E 76:036303

    Article  ADS  Google Scholar 

  • Thompson PA, Robbins MO (1990) Shear flow near solids: epitaxial order and flow boundary conditions. Phys Rev A 41:6830–6837

    Article  ADS  Google Scholar 

  • Travis KP, Gubbins KE (2000) Poiseuille flow of Lennard-Jones fluids in narrow slit pores. J Chem Phys 112(4):1984–1994

    Article  ADS  Google Scholar 

  • Travis KP, Todd BD, Evans DJ (1998) Departure from Navier Stokes hydrodynamics in confined liquids. Phys Rev E 55(4):4288–4295

    Article  ADS  Google Scholar 

  • Vinogradova OI (1995) Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11:2213–2220

    Article  Google Scholar 

  • Vinogradova OI, Yakubov GE (2006) Surface roughness and hydrodynamic boundary conditions. Phys Rev E 73:045302

    Article  ADS  Google Scholar 

  • Watts ET, Krim J, Widom A (1990) Experimental observation of interfacial slippage at the boundary of molecularly thin films with good substraite. Phys Rev B 41(6):3466–3472

    Article  ADS  Google Scholar 

  • Wu Z, Liu Z, Wang W, Fan Y, Xu N (2008) Non-equilibrium molecular dynamics simulation on permeation and separation of H2/CO in nanoporous carbon membranes. Sep Purif Technol 64:71–77

    Article  Google Scholar 

  • Xu L, Sahimi M, Tsotsis TT (2000) Nonequilibrium molecular dynamics simulation of transport and separation of gas mixtures in nanoporous materials. Phys Rev E 62(5):6942–6948

    Article  ADS  Google Scholar 

  • Zhu Y, Granick S (2001) Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys Rev Lett 87:096105

    Article  ADS  Google Scholar 

  • Zhu Y, Granick S (2002) Limits of the hydrodynamic no-slip boundary condition. Phys Rev Lett 88:106102

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Ya. Rudyak .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rudyak, V.Y., Aniskin, V.M., Maslov, A.A., Minakov, A.V., Mironov, S.G. (2018). Modeling of Nanoflows. In: Micro- and Nanoflows. Fluid Mechanics and Its Applications, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-75523-6_5

Download citation

Publish with us

Policies and ethics