Skip to main content

Relations Between Domain States and Heterophase Structures in Lead-Free Ferroelectric Solid Solutions

  • Chapter
  • First Online:
Heterogeneous Ferroelectric Solid Solutions

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 151))

  • 479 Accesses

Abstract

Examples of domain structures and elastic matching of phases in a few systems of lead-free perovskite-type ferroelectric solid solutions are described by taking into account the crystallographic method and model concepts on heterophase samples. Features of heterophase (two- or three-phase) states and phase contents in the lead-free systems near the morphotropic phase boundary are discussed, and some variants of elastic matching of polydomain phases and heterophase regions are considered. Diagrams that link volume fractions of specific domain types and phase contents at complete stress relief in heterophase samples near the morphotropic phase boundary are analysed, and calculated results on the phase contents are in agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang R, Jiang B, Cao W (2001) Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J Appl Phys 90:3471–3475

    Article  Google Scholar 

  2. Zhang R, Jiang B, Cao W, Amin A (2002) Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3–0.07PbTiO3 domain engineered single crystal. J Mater Sci Lett 21:1877–1879

    Article  Google Scholar 

  3. Davis M (2007) Picturing the elephant: giant piezoelectric activity and the monoclinic phases of relaxor-ferroelectric single crystals. J Electroceram 19:23–45

    Article  Google Scholar 

  4. Bokov AA, Ye Z-G (2006) Recent progress in relaxor ferroelectrics with perovskite structure. J Mater Sci 41:31–52

    Article  Google Scholar 

  5. Shuvaeva VA, Glazer AM, Zekria D (2005) The macroscopic symmetry of Pb(Mg1/3Nb2/3)1−x Ti x O3 in the morphotropic phase boundary region (x = 0.25–0.5). J Phys: Condens Matter 17:5709–5723

    Google Scholar 

  6. Ye Z-G, Topolov VYu (2001) Complex domain and heterophase structures in Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Ferroelectrics 253:79–86

    Article  Google Scholar 

  7. Gupta S, Maurya D, Yan Y, Priya S (2012) Development of KNN-based piezoelectric materials. In: Priya S, Nahm S (eds) Lead-Free Piezoelectrics. Springer, New York, Dordrecht, Heidelberg, London, pp 89–119

    Google Scholar 

  8. Lee HJ, Zhang S (2012) Perovskite lead-free piezoelectric ceramics. Ibid. pp 291–309

    Google Scholar 

  9. Zhang Q, Zhao X, Luo H (2012) Crystal growth and electric properties of Na0.5Bi0.5TiO3–BaTiO3 single crystals. Ibid. pp 337–352

    Google Scholar 

  10. Uchino K (2012) Applications of lead-free piezoelectrics. Ibid. pp 511–528

    Google Scholar 

  11. Huo X, Zheng L, Zhang R, Wang R, Wang J, Sang S, Wang Y, Yang B, Cao W (2014) High quality lead-free (Li, Ta) modified (K, Na)NbO3 single crystal and its complete set of elastic, dielectric and piezoelectric coefficients with macroscopic 4mm symmetry. CrystEngComm 16:9828–9833

    Article  Google Scholar 

  12. Huo X, Zhang R, Zheng L, Zhang S, Wang R, Wang J, Sang S, Yang B, Cao W (2015) (K, Na, Li)(Nb, Ta)O3: Mn lead-free single crystal with high piezoelectric properties. J Am Ceramic Soc 98:1829–1835

    Article  Google Scholar 

  13. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric Ceramics. Academic Press, London, New York

    Google Scholar 

  14. Smolensky GA, Bokov VA, Isupov VA, Krainik NN, Pasynkov RE, Sokolov AI, Yushin NK (1985) Physics of Ferroelectric Phenomena. Nauka, Leningrad (in Russian)

    Google Scholar 

  15. Xu Y (1991) Ferroelectric materials and their applications. North-Holland, Amsterdam, London, New York, Toronto

    Google Scholar 

  16. Gorish AV, Dudkevich VP, Kupriyanov MF, Panich AE, Turik AV (1999) Piezoelectric Device-making. In: Physics of Ferroelectric Ceramics, vol 1. Radiotekhnika, Moscow (in Russian)

    Google Scholar 

  17. Garg R, Rao BN, Senyshyn A, Krishna PSR, Ranjan R (2013) Lead-free piezoelectric system (Na0.5Bi0.5)TiO3-BaTiO3: Equilibrium structures and irreversible structural transformations driven by electric field and mechanical impact. Phys Rev B 88:014103–15

    Article  Google Scholar 

  18. Aksel E, Forrester JS, Jones JL, Thomas PA, Page K, Suchomel MR (2011) Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3. Appl Phys Lett 98:152901–3p

    Article  Google Scholar 

  19. Rao BN, Ranjan R (2012) Electric-field-driven monoclinic-to-rhombohedral transformation in Na1/2Bi1/2TiO3. Phys Rev B 86:134103–4p

    Article  Google Scholar 

  20. Takenaka T, Maruyama K, Sakata K (1991) (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn J Appl Phys Part 1 30:2236–2239

    Article  Google Scholar 

  21. Topolov VYu, Rao BN, Garg R, Ranjan R (2015) Interrelationship between interphase boundaries and phase contents near the critical compositions of lead-free ferroelectric (Na0.5Bi0.5)TiO3–BaTiO3. Ferroelectrics 482:22–33

    Article  Google Scholar 

  22. Topolov VYu, Brajesh K, Ranjan R (2016) Composition driven ferroelectric transformations in lead-free Ba(Ti1 − x Ce x )O3 (0.02 ≤ x ≤ 0.10). Mater Chem Phys 179:152–159

    Article  Google Scholar 

  23. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:257602–4 p

    Article  Google Scholar 

  24. Kalyani AK, Senyshyn A, Ranjan R (2013) Polymorphic phase boundaries and enhanced piezoelectric response in extended composition range in the lead free ferroelectric BaTi1–x Zr x O3. J Appl Phys 114:014102–6 p

    Article  Google Scholar 

  25. Kalyani AK, Brajesh K, Senyshyn A, Ranjan R (2014) Orthorhombic-tetragonal phase coexistence and enhanced piezo-response at room temperature in Zr, Sn, and Hf modified BaTiO3. Appl Phys Lett 104:252906–5 p

    Article  Google Scholar 

  26. Brajesh K, Tanwar K, Abebe M, Ranjan R (2015) Relaxor ferroelectricity and electric-field-driven structural transformation in the giant lead-free piezoelectric (Ba, Ca)(Ti, Zr)O3. Phys Rev B 92:224112–8 p

    Article  Google Scholar 

  27. Tian Y, Wei L, Chao X, Liu Z, Yang Z (2013) Phase transition behavior and large piezoelectricity near the morphotropic phase boundary of lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics. J Am Ceram Soc 96:496–502

    Google Scholar 

  28. Kalyani AK, Krishnan H, Sen A, Senyshyn A, Ranjan R (2015) Polarization switching and high piezoelectric response in Sn-modified BaTiO3. Phys Rev B91:024101–13 p

    Article  Google Scholar 

  29. Topolov VYu, Brajesh K, Ranjan R, Panich AE (2017) Plausible domain configurations and phase contents in two- and three-phase BaTiO3-based lead-free ferroelectrics. J Phys D Appl Phys 50:065307–065311

    Article  Google Scholar 

  30. Bondarenko EI, Topolov VYu, Turik AV (1990) The effect of 90° domain wall displacements on piezoelectric and dielectric constants of perovskite ceramics. Ferroelectrics 110:53–56

    Article  Google Scholar 

  31. Bondarenko EI, Topolov VYu, Turik AV (1991) The role of 90° domain wall displacements in forming physical properties of perovskite ferroelectric ceramics. Ferroelectr Lett Sect 13:13–19

    Article  Google Scholar 

  32. Topolov VYu, Kalyani AK, Brajesh K, Ranjan R, Panich AE (2017) Comparative study on heterophase structures in ferroelectric solid solutions based on barium titanate. Cryst Res Technol 52:1600299–11 p

    Article  Google Scholar 

  33. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Sect A 32:751–767

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Yu. Topolov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Topolov, V.Y. (2018). Relations Between Domain States and Heterophase Structures in Lead-Free Ferroelectric Solid Solutions. In: Heterogeneous Ferroelectric Solid Solutions. Springer Series in Materials Science, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-319-75520-5_6

Download citation

Publish with us

Policies and ethics