Skip to main content

Phase Coexistence Under Electric Field

  • Chapter
  • First Online:
  • 470 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 151))

Abstract

Features of the phase coexistence in relaxor-ferroelectric single crystals under the electric field are discussed by taking into account results of the crystallographic description. The electric field is applied along one of the perovskite-cell directions, [001], [011] or [111]. Different scenarios of stress relief in the presence of complex domain structures and morphotropic phases are proposed by taking into account peculiarities of the unit-cell behaviour. The role of the intermediate polydomain monoclinic phase in forming the various heterophase states is described in the context of effective stress relief in different variants of the phase coexistence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Smolensky GA, Bokov VA, Isupov VA, Krainik NN, Pasynkov RE, Sokolov AI, Yushin NK (1985) Physics of ferroelectric phenomena. Nauka, Leningrad (in Russian)

    Google Scholar 

  2. Cross LE (2008) Relaxor ferroelectrics. In: Heywang W, Wersing W, Lubitz K (eds) Piezoelectricity. Evolution and future of a technology. Springer, Berlin, pp 132–155

    Google Scholar 

  3. Chen J, Chan HM, Harmer MP (1989) Ordering structure and dielectric properties of undoped and La/Na-doped Pb[Mg1/3Nb2/3]O3. J Am Ceram Soc 72:593–598

    Article  Google Scholar 

  4. De Mathan N, Husson E, Calvarin G, Morell A (1991) Structural study of a poled PbMg1/3Nb2/3O3 ceramic at low temperature. Mater Res Bull 26:1167–1172

    Article  Google Scholar 

  5. Ye Z-G, Schmid H (1993) Optical, dielectric and polarization studies of the electric field-induced phase transition in Pb(Mg1/3Nb2/3)O3 [PMN]. Ferroelectrics 145:83–108

    Article  Google Scholar 

  6. Ye Z-G (1998) Relaxor ferroelectric complex perovskites: structure, properties and phase transitions. Key Eng Mater 155–156:81–122

    Article  Google Scholar 

  7. Topolov VY, Ye Z-G, Schmid H (1995) A crystallographic analysis of macrodomain structure in Pb(Mg1/3Nb2/3)O3. J Phys: Condens Matter 7:3041–3049

    Google Scholar 

  8. Topolov VY, Rabe H, Schmid H (1993) Mechanical stresses and transition regions in polydomain Pb2CoWO6 crystals. Ferroelectrics 146:113–121

    Article  Google Scholar 

  9. Lu Y, Jeong DY, Cheng Z-Y, Zhang QM, Luo H, Yin Z, Viehland D (2001) Phase transitional behavior and piezoelectric properties of the orthorhombic phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. Appl Phys Lett 78:3109–3111

    Article  Google Scholar 

  10. Bai F, Wang N, Li J, Viehland D, Gehring PM, Xu G, Shirane G (2004) X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 crystal. J Appl Phys 96:1620–1627

    Article  Google Scholar 

  11. Cao H, Bai F, Wang N, Li J, Viehland D, Xu G, Shirane G (2005) Intermediate ferroelectric orthorhombic and monoclinic MB phases in [110] electric-field-cooled Pb(Mg1/3Nb2/3)O3–30%PbTiO3 crystals. Phys Rev B 72:064104–6 p

    Google Scholar 

  12. Cao H, Li J, Viehland D (2006) Fragile phase stability in (1 − x)Pb(Mg1/3Nb2/3O3) − xPbTiO3 crystals: a comparison of [001] and [110] field-cooled phase diagrams. Phys Rev 73:184110–9 p

    Google Scholar 

  13. Fu H, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403:281–283

    Article  Google Scholar 

  14. Noheda B, Cox DE, Shirane G, Park S-E, Cross LE, Zhong Z (2001) Polarization rotation via a monoclinic phase in the piezoelectric 92%PbZn1/3Nb2/3O3-8%PbTiO3. Phys Rev Lett 86:3891–3894

    Article  Google Scholar 

  15. Noheda B, Cox DE (2006) Bridging phases at the morphotropic boundaries of lead oxide solid solutions. Phase Transitions 79:5–20

    Article  Google Scholar 

  16. Cao H, Li J, Viehland D (2006) Monoclinic MC vs orthorhombic in [001] and [110] electric-field-cooled Pb(Mg1/3Nb2/3O3)–35%PbTiO3 crystals. Appl Phys Lett 88:072915–3 p

    Google Scholar 

  17. Topolov VY (2006) Comparative analysis of the twin and heterophase structures in (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 crystals. Phys Solid State 48:1334–1341

    Article  Google Scholar 

  18. Cao H, Bai F, Li J, Viehland D, Xu G, Hiraka H, Shirane G (2005) Structural phase transformation and phase boundary/stability studies of field-cooled Pb(Mg1/3Nb2/3O3)–32%PbTiO3 crystals. J Appl Phys 97:094101–4 p

    Google Scholar 

  19. Noheda B, Cox DE, Shirane G, Gao J, Ye Z-G (2002) Phase diagram of the ferroelectric relaxor (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3. Phys Rev B 66:054104–10 p

    Google Scholar 

  20. Viehland D, Li JF, Amin A (2002) Electromechanical and elastic isotropy in the (011) plane of 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 crystals: inhomogeneous shearing of polarization. J Appl Phys 92:3985–3989

    Article  Google Scholar 

  21. Topolov VYu, Cao H, Viehland D (2007) Correlation between non-180° domain structures in (1 − x)Pb(A1/3Nb2/3)O3–xPbTiO3 single crystals (A = Mg or Zn) under an applied [001] electric field. J Appl Phys 102:024103–6 p

    Google Scholar 

  22. Cao H, Li J, Viehland D (2006) Structural origin of the relaxor-to-normal ferroelectric transition in Pb(Mg1/3Nb2/3O3)–xPbTiO3. J Appl Phys 100:034110–4 p

    Google Scholar 

  23. Durbin MK, Hicks JC, Park S-E, Shrout TR (2000) X-ray diffraction and phenomenological studies of the engineered monoclinic crystal domains in single crystal relaxor ferroelectrics. J Appl Phys 87:8159–8164

    Article  Google Scholar 

  24. Viehland D (2000) Symmetry-adaptive ferroelectric mesostates in oriented Pb(BI1/3BII2/3)O3 – PbTiO3 crystals. J Appl Phys 88:4794–4806

    Article  Google Scholar 

  25. La-Orauttapong D, Noheda B, Ye Z-G, Gehring PM, Toulouse J, Cox DE, Shirane G (2002) Phase diagram of the relaxor ferroelectric (1 − x)Pb(Zn1/3Nb2/3)O3xPbTiO3. Phys Rev B 65:144101–7 p

    Google Scholar 

  26. Noheda B, Zhong Z, Cox DE, Shirane G, Park S-E, Rehrig P (2002) Electric-field-induced phase transitions in rhombohedral Pb(Zn1/3Nb2/3)1-x Ti x O3. Phys Rev B 65:224101–7 p

    Google Scholar 

  27. Park S-E, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811

    Article  Google Scholar 

  28. Topolov VYu, Turik AV (2001) Interphase boundaries and high piezoelectric activity of xPbTiO3 – (1 − x)Pb(Zn1/3Nb2/3)O3 crystals. Phys Solid State 43:1117–1123

    Article  Google Scholar 

  29. Topolov VYu, Turik AV (2002) An intermediate monoclinic phase and electromechanical interactions in xPbTiO3 – (1 − x)Pb(Zn1/3Nb2/3)O3 crystals. Phys Solid State 44:1355–1362

    Article  Google Scholar 

  30. Topolov VY (2002) Intermediate monoclinic phase and elastic matching in perovskite-type solid solutions. Phys Rev B 65:094207–6 p

    Google Scholar 

  31. Kuwata J, Uchino K, Nomura S (1981) Phase transitions in the Pb(Zn1/3Nb2/3)O3 – PbTiO3 system. Ferroelectrics 37:579–582

    Google Scholar 

  32. Bondarenko EI, Topolov VYu, Turik AV (1990) The effect of 90° domain wall displacements on piezoelectric and dielectric constants of perovskite ferroelectric ceramics. Ferroelectrics 110:53–56

    Article  Google Scholar 

  33. Durbin MK, Jacobs EW, Hicks JC, Park S-E (1999) In situ x-ray diffraction study of an electric field induced phase transition in the single crystal relaxor ferroelectric 92%Pb(Zn1/3Nb2/3)O3–8%PbTiO3. Appl Phys Lett 74:2848–2850

    Article  Google Scholar 

  34. Paik D-S, Park S-E, Wada S, Liu S-F, Shrout TR (1999) E-field induced phase transition in 〈001〉-oriented rhombohedral 0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 crystals. J Appl Phys 85:1080–1083

    Article  Google Scholar 

  35. Bellaiche L, García A, Vanderbilt D (2001) Electric-field induced polarization paths in Pb(Zr1-x Ti x )O3 alloys. Phys Rev B64:060103–4 p

    Google Scholar 

  36. Noheda B, Cox DE, Shirane G, Guo R, Jones B, Cross LE (2001) Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys Rev B 63:014103–6 p

    Google Scholar 

  37. Leontiev NG, Kolesova RV, Eremkin VV, Fesenko OE, Smotrakov VG (1984) Space group of high-temperature lead hafnate orthorhombic phase. Kristallografiya 29:395–397 (in Russian)

    Google Scholar 

  38. Viehland D, Li JF (2002) Anhysteretic field-induced rhombhohedral to orthorhombic transformation in 〈110〉-oriented 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 crystals. J Appl Phys 92:7690–7692

    Article  Google Scholar 

  39. Feng Z, Luo H, Guo Y, He T, Xu H (2003) Dependence of high electric-field-induced strain on the composition and orientation of Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals. Solid State Commun 126:347–351

    Article  Google Scholar 

  40. Liu T, Lynch CS (2003) Ferroelectric properties of [110], [001] and [111] poled relaxor single crystals: measurements and modeling. Acta Mater 51:407–416

    Article  Google Scholar 

  41. Liu T, Lynch CS (2005) Characterization and modeling of relaxor single crystals. Integr Ferroelectr 71:173–179

    Article  Google Scholar 

  42. Liu T, Lynch CS (2006) Domain engineered relaxor ferroelectric single crystals. Continuum Mech Thermodyn 18:119–135

    Article  Google Scholar 

  43. Yao J, Cao H, Ge W, Li J, Viehland D (2009) Monoclinic M B phase and phase instability in [110] field cooled Pb(Zn1/3Nb2/3)O3–4.5%PbTiO3 single crystals. Appl Phys Lett 95:052905–3 p

    Google Scholar 

  44. Renault A-E, Dammak H, Calvarin G, Gaucher P, Thi MP (2005) Electric-field-induced orthorhombic phase in Pb[(Zn1/3Nb2/3)0.955Ti0.045]O3 single crystals. J Appl Phys 97:044105–6 p

    Google Scholar 

  45. Topolov VY (2006) Links between polydomain phases in electric-field-cooled (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystals. Appl Phys Lett 89:082904–3 p

    Google Scholar 

  46. Topolov VYu, Cao H, Viehland D (2007) Phase coexistence in [111] electric-field-cooled 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 crystals. J Phys: Condens Matter 19:246224–9 p

    Google Scholar 

  47. Cao H, Li J, Viehland D (2006) Electric-field-induced orthorhombic to monoclinic MB phase transition in [111] electric field cooled Pb(Mg1/3Nb2/3)O3 − 30%PbTiO3 crystals. J Appl Phys 100:084102–5 p

    Google Scholar 

  48. Davis M, Damjanovic D, Setter N (2005) Electric-field-induced orthorhombic to rhombohedral in [111] C -oriented 0.92Pb(Zn1/3Nb2/3)O3 − 0.08PbTiO3. J Appl Phys 97:064101–6 p

    Google Scholar 

  49. Lee J-K, Yi JY, Hong K-S, Park S-E, Millan J (2002) Domain configuration and crystal structure of Pb(Zn1/3Nb2/3)O3 − 5%PbTiO3 crystals as a function of the electric-field direction. J Appl Phys 91:4474–4478

    Article  Google Scholar 

  50. Fesenko EG, Gavrilyachenko VG, Semenchev AF (1990) Domain structure of multiaxial ferroelectric crystals. Rostov University Press, Rostov-on-Don (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Yu. Topolov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Topolov, V.Y. (2018). Phase Coexistence Under Electric Field. In: Heterogeneous Ferroelectric Solid Solutions. Springer Series in Materials Science, vol 151. Springer, Cham. https://doi.org/10.1007/978-3-319-75520-5_3

Download citation

Publish with us

Policies and ethics