Skip to main content

Green and Ecofriendly Materials for the Remediation of Inorganic and Organic Pollutants in Water

  • Chapter
  • First Online:

Abstract

The widespread of organic and inorganic pollutants in wastewater from various industries, are responsible for serious environmental problems meanwhile represent a danger for human being. Therefore, the search of cost-effective methods of wastewater treatment containing in particular heavy metals and dyes, become of great importance. Noteworthy, adsorption has proven to be most effective technology for purification of wastewater from organic and inorganic pollutants. In this review, different types of green and ecofriendly materials (biosorbents, graphene-based composites, metal oxides, etc.) for dyes and heavy metals adsorption will be discussed. The biosorbents such as agricultural waste materials (waste seeds, orange peel, exhausted coffee ground powder, wood apple shell, sweet potato peels, wheat straws, etc.), activated carbon prepared from different types of agricultural waste (coconut husk, forest and wood-processing residues, papaya seeds, magnetic biochar etc.), graphene-based adsorbents and their derivatives, obtained by eco-friendly green synthesis, have been discussed and their adsorption activity has been described in details.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abia AA, Harsfall M, Didi O (2003) The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution. Bioresour Technol 90:345–348

    Article  CAS  Google Scholar 

  • Abollino O, Aceto M, Malandrino M et al (2003) Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water Res 37:1619–1627

    Article  CAS  Google Scholar 

  • Adebisi JA, Agunsoye JO, Bello SA et al (2017) Potential of producing solar grade silicon nanoparticles from selected agro-wastes. Sol Energy 142:68–86

    Article  CAS  Google Scholar 

  • Adegoke KA, Bello OS (2015) Dye sequestration using agricultural wastes as adsorbents. Water Res Ind 12:8–24. https://doi.org/10.1016/j.wri.2015.09.002

    Article  Google Scholar 

  • Adio SO, Omar MH, Asif M et al (2017) Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: a factorial design analysis. Process Saf Environ Prot 107:518–527

    Article  CAS  Google Scholar 

  • Aghababaei A, Ncibi MC, Sillanpää M (2017) Optimized removal of oxytetracycline and cadmium from contaminated waters using chemically-activated and pyrolyzed biochars from forest and wood-processing residues. Bioresour Technol 239:28–36. https://doi.org/10.1016/j.biortech.2017.04.119

    Article  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2005) Removal of heavy metals by waste tea leaves from aqueous solution. Eng Life Sci 5:158–162

    Article  CAS  Google Scholar 

  • Ahmed FM (2001) An overview of arsenic removal technologies in Bangladesh and India. In: Feroze Ahmed M et al (eds) Technologies for arsenic removal from drinking water. A compilation of papers presented at the international workshop on technologies for arsenic removal from drinking water. Bangladesh University of Engineering and Technology, Dhaka, Bangladesh and the United Nations University, Tokyo, May 2001

    Google Scholar 

  • Al Hamouz OCS, Adelabu IO, Saleh TA (2017a) Novel cross-linked melamine based polyamine/CNT composites for lead ions removal. J Environ Manage 192:163–170

    Article  CAS  Google Scholar 

  • Al Hamouz OCS, Estatie M, Tawfik A (2017b) Saleh removal of cadmium ions from wastewater by dithiocarbamate functionalized pyrrole based terpolymers. Sep Purif Technol 177:101–109

    Article  CAS  Google Scholar 

  • Albadarin AB, Charara M, Tarboush BJA et al (2017) Mechanism analysis of tartrazine biosorption onto masau stones; a low cost by-product from semi-arid regions. J Mol Liq 242:478–483. https://doi.org/10.1016/j.molliq.2017.07.045

    Article  CAS  Google Scholar 

  • Alhogbi BG (2017) Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solutions. Sustain Chem Pharm 6:21–25. https://doi.org/10.1016/j.scp.2017.06.004

    Article  Google Scholar 

  • Ali A (2017) Removal of Mn(II) from water using chemically modified banana peels as efficient adsorbent. Environ Nanotech Monit Manage 7:57–63. https://doi.org/10.1016/j.enmm.2016.12.004

    Article  Google Scholar 

  • Ali HR, Hassaan MA (2017) Applications of bio-waste materials as green synthesis of nanoparticles and water purification. Adv Mater Chem 1(1):6–22. https://doi.org/10.11648/j.amc.20170101.12

    Article  Google Scholar 

  • Ali A, Saeed K, Mabood F (2016) Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alex Eng J 55(3):2933–2942. https://doi.org/10.1016/j.aej.2016.05.011

    Article  Google Scholar 

  • Aljeboree AM, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 10(2):S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020

    Article  CAS  Google Scholar 

  • Almubaddal F, Alrumaihi K, Ajbar A (2009) Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant. J Hazard Mater 161:431–438

    Article  CAS  Google Scholar 

  • Alqadami AA, Naushad M, Abdalla MA et al (2017) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J Clean Prod 156:426–436. https://doi.org/10.1016/j.jclepro.2017.04.085

    Article  CAS  Google Scholar 

  • Al-Shehri S, Al-Senany N, Altuwirqi R et al (2017) Green synthesis of CuxO nanoscale MOS capacitors processed at low temperatures. Surf Coat Technol 320:246–251

    Article  CAS  Google Scholar 

  • Alshehri SM, Naushad M, Ahamad T et al (2014) Synthesis, characterization of curcumin based ecofriendly antimicrobial bio-adsorbent for the removal of phenol from aqueous medium. Chem Eng J 254:181–189. https://doi.org/10.1016/j.cej.2014.05.100

    Article  CAS  Google Scholar 

  • Alslaibi TM, Abustan I, Ahmad MA et al (2014) Comparison of activated carbon prepared from olive stones by microwave and conventional heating for iron (II), lead (II), and copper (II) removal from synthetic wastewater. Environ Prog Sustain Energy 33:1074–1085

    CAS  Google Scholar 

  • Al-Zoubi H, Ibrahim KA, Abu-Sbeih KA (2015) Removal of heavy metals from wastewater by economical polymeric collectors using dissolved air flotation process. J Water Process Eng 8:19–27

    Article  Google Scholar 

  • Amiri M, Salavati-Niasari M, Akbari A et al (2017) Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: herbal and green sol-gel autocombustion synthesis. Int J Hydrogen Energy 4:24846–24860

    Article  CAS  Google Scholar 

  • Anand K, Tilokea C, Naidoo P et al (2017) Phytonanotherapy for management of diabetes using green synthesis nanoparticles. J Photochem Photobiol, B: Biol 173:626–639

    Article  CAS  Google Scholar 

  • Anastopoulos I, Kyzas GZ (2015) Progress in batch biosorption of heavy metals onto algae. J Mol Liq 209:77–86. https://doi.org/10.1016/j.molliq.2015.05.023

    Article  CAS  Google Scholar 

  • Anastopoulos I, Karamesouti M, Mitropoulos AC et al (2017) A review for coffee adsorbents. J Mol Liq 229:555–565. https://doi.org/10.1016/j.molliq.2016.12.096

    Article  CAS  Google Scholar 

  • Angelis GD, Medeghini L, Conte AM et al (2017) Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. J Clean Prod 164:1497–1506. https://doi.org/10.1016/j.jclepro.2017.07.085

    Article  CAS  Google Scholar 

  • Archana B, Manjunath K, Nagaraju G et al (2017) Enhanced photocatalytic hydrogen generation and photostability of ZnO nanoparticles obtained via green synthesis. Int J Hydrogen Energy 42:5125–5131

    Article  CAS  Google Scholar 

  • Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2010) Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chem Eng J 162:178–185

    Article  CAS  Google Scholar 

  • Asasian N, Kaghazchi T, Soleimani M (2012) Elimination of mercury by adsorption onto activated carbon prepared from the biomass material. J Ind Eng Chem 18:283–289

    Article  CAS  Google Scholar 

  • Asuquo ED, Martin AD (2016) Sorption of cadmium (II) ion from aqueous solution onto sweet potato (Ipomoea batatas L.) peel adsorbent: characterisation, kinetic and isotherm studies. J Environ Chem Eng 4(4):4207–4228. https://doi.org/10.1016/j.jece.2016.09.024

    Article  CAS  Google Scholar 

  • Attari M, Bukhari SS, Kazemian H et al (2017) A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. J Environ Chem Eng 5:391–399

    Article  CAS  Google Scholar 

  • Awual MR (2016a) Assessing of lead(III) capturing from contaminated wastewater using ligand doped conjugate adsorbent. Chem Eng J 289:65–73

    Article  CAS  Google Scholar 

  • Awual MR (2016b) Novel nanocomposite materials for efficient and selective mercury ions capturing from wastewater. Chem Eng J 307:456–465

    Article  CAS  Google Scholar 

  • Awual MR, Hasan MM, Shahat A et al (2015) Investigation of ligand immobilized nano-composite adsorbent for efficient cerium(III) detection and recovery. Chem Eng J 265:210–218. https://doi.org/10.1016/j.cej.2014.12.052

    Article  CAS  Google Scholar 

  • Awual MR, Hasan MM, Eldesoky GE et al (2016a) Facile mercury detection and removal from aqueous media involving ligand impregnated conjugate nanomaterials. Chem Eng J 290:243–251

    Article  CAS  Google Scholar 

  • Awual MR, Hasan MM, Khaleque MA et al (2016b) Treatment of copper(II) containing wastewater by a newly developed ligand based facial conjugate materials. Chem Eng J 288:368–376

    Article  CAS  Google Scholar 

  • Ayyappan R, Sophia CA, Swaminathan K et al (2005) Removal of Pb (II) from aqueous solution using carbon derived from agricultural wastes. Process Biochem 4:1293–1299

    Article  CAS  Google Scholar 

  • Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metal uptake from contaminated water: a review. J Hazard Mater 97:219–243

    Article  CAS  Google Scholar 

  • Baca R, Cheong KY (2015) Green synthesis of iron oxide thin-films grown from recycled iron foils. Mater Sci Semicond Process 29:294–299

    Article  CAS  Google Scholar 

  • Badawi MA, Negm NA, Abou Kana MTH et al (2017) Adsorption of aluminum and lead from wastewater by chitosan-tannic acid modified biopolymers: isotherms, kinetics, thermodynamics and process mechanism. Int J Biomacromol. https://doi.org/10.1016/j.ijbiomac.2017.03.003

    Article  Google Scholar 

  • Bahadir T, Bakan G, Altas L et al (2007) The investigation of lead removal by biosorption: an application at storage battery industry wastewaters. Enzyme Microb Technol 41:98–102

    Article  CAS  Google Scholar 

  • Banerjee S, Chattopadhyaya MC (2017) Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab J Chem 10:S1629–S1638. https://doi.org/10.1016/j.arabjc.2013.06.005

    Article  CAS  Google Scholar 

  • Bao S, Li K, Ning P et al (2016) Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: behaviours and mechanisms. Appl Surf Sci 393:457–466

    Article  CAS  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  CAS  Google Scholar 

  • Barquilha CER, Cossich ES, Tavares CRG et al (2017) Biosorption of nickel(II) and copper(II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. J Clean Prod 150:58–64. https://doi.org/10.1016/j.jclepro.2017.02.199

    Article  CAS  Google Scholar 

  • Bartczak P, Norman M, Klapiszewski Ł et al (2015) Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: a kinetic and equilibrium study. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.07.018

    Article  Google Scholar 

  • Bharath G, Alhseinat E, Ponpandian N et al (2017) Development of adsorption and electrosorption techniques for removal of organic and inorganic pollutants from wastewater using novel magnetite/porous graphene-based nanocomposites. Sep Purif Technol 188:206–218. https://doi.org/10.1016/j.seppur.2017.07.024

    Article  CAS  Google Scholar 

  • Bhargavi SD, Savitha J (2014) Arsenate resistant Penicillium coffeae: a potential fungus for soil bioremediation. Bull Environ Contam Toxicol 92:369–373

    Article  CAS  Google Scholar 

  • Bibi I, Nazar N, Iqbal M, Kamal S, Nawaz H, Nouren S, Safa Y, Jilani K, Sultan M, Ata S, Rehman F, Abbas M (2017) Green and eco-friendly synthesis of cobalt-oxide nanoparticle: characterization and photo-catalytic activity. Adv Powder Technol 28:2035–2043

    Article  CAS  Google Scholar 

  • Bulgariu L, Bulgariu D (2014) Enhancing biosorption characteristics of marine green algae (Ulva lactuca) for heavy metals removal by alkaline treatment. J Bioprocess Biotechniques 4:146

    Article  Google Scholar 

  • Bulut Y, Tez Z (2003) Removal of heavy metal ions by modified sawdust of walnut. Fresen Environ Bull 12:1499–1504

    CAS  Google Scholar 

  • Bulut Y, Tez Z (2007) Adsorption studies on ground shells of hazelnut and almond. J Hazard Mater 149:35–41

    Article  CAS  Google Scholar 

  • Carolin CF, Kumar PS, Saravanan A et al (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799

    Article  CAS  Google Scholar 

  • Cho ES, Kim J, Tejerina B et al (2012) Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nat Mater 11(2012):978–985

    Article  CAS  Google Scholar 

  • Choi JM, Jeong D, Cho E et al (2016) Chemically functionalized silica gel with alkynyl terminated monolayers as an efficient new material for removal of mercury ions from water. J Ind Eng Chem 35:376–382

    Article  CAS  Google Scholar 

  • Choudhary R, Patra S, Madhuria R et al (2017) Designing of carbon based fluorescent nanosea-urchin via green-synthesis approach for live cell detection of zinc oxide nanoparticle. Biosens Bioelectron 91:472–481

    Article  CAS  Google Scholar 

  • Chowdhury S, Mazumder MAJ, Al-Attas O et al (2016) Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ 569–570:476–488

    Article  CAS  Google Scholar 

  • Chuang CL, Fan M, Xu M et al (2005) Adsorption of arsenic(V) by activated carbon prepared from oat hulls. Chemosphere 61:478–483

    Article  CAS  Google Scholar 

  • Dai B, Cao M, Fang G et al (2012) Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS. J Hazard Mater 219–220:103–110

    Article  CAS  Google Scholar 

  • Deb KS, Dwivedi V, Dasgupta K et al (2016) Novel Amidoamine functionalized multi-walled carbon nanotubes for removal of mercury(II) ions from wastewater: combined experimental and density functional theoretical approach. Chem Eng J 313:899

    Google Scholar 

  • Debbaudt AL, Ferreira ML, Gschaider ME (2004) Theoretical and experimental study of M2 adsorption on biopolymers III: comparative kinetic pattern of Pb, Hg and Cd. Carbohydr Polym 56:321–332

    Article  CAS  Google Scholar 

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229

    Article  CAS  Google Scholar 

  • Devani MA, Munshi B, Oubagaranadin JUK et al (2017) Remediation of Hg(II) from solutions using Cajanus cajan husk as a new sorbent. Environ Technol 38:1878–1886

    Article  CAS  Google Scholar 

  • Dong C, Lu J, Qiu B et al (2017) Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and heavy metal ions. Appl Catal B: Environ. https://doi.org/10.1016/j.apcatb.2017.10.011

  • Doyurum S, Celik A (2006) Pb(II) and Cd(II) removal from aqueous solutions by olive cake. J Hazard Mater 138:22–28

    Article  CAS  Google Scholar 

  • Duan Y, Han DS, Batchelor B et al (2016) Synthesis, characterization, and application of pyrite for removal of mercury. Colloid Surf Aspects 490:326–335

    Article  CAS  Google Scholar 

  • Ebtesam EB, Helmy S, Hussien H et al (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3:181–192

    Article  CAS  Google Scholar 

  • El-Shafey EI, Cox M, Pichugin AA et al (2002) Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution. J Chem Tech Biotechnol 77:429–436

    Article  CAS  Google Scholar 

  • Etim UJ, Umoren SA, Eduok UM (2016) Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution. J Saud Chem Soc 20:S67–S76. https://doi.org/10.1016/j.jscs.2012.09.014

    Article  CAS  Google Scholar 

  • Farhan AM, Salem NM, Ahmad AL et al (2012) Kinetic, equilibrium and thermodynamic studies on the biosorption of heavy metals by Ceratonia siliqua bark. Am J Chem 2:335–342

    Article  CAS  Google Scholar 

  • Fawzy MA (2016) Phycoremediation and adsorption isotherms of cadmium and copper ions by Merismopedia tenuissima and their effect on growth and metabolism. Environ Toxicol Pharmacol 46:116–121

    Article  CAS  Google Scholar 

  • Feng Y, Liu Y, Xue L et al (2017) Carboxylic acid functionalized sesame straw: a sustainable cost-effective bioadsorbent with superior dye adsorption capacity. Bioresour Technol 238:675–683. https://doi.org/10.1016/j.biortech.2017.04.066

    Article  CAS  Google Scholar 

  • Fiol N, Villaescusa I, Martinez M et al (2006) Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep Purif Technol 50:132–140

    Article  CAS  Google Scholar 

  • Gercel O, Gercel HF (2007) Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chem Eng J 132:289–297

    Article  CAS  Google Scholar 

  • Ghidan AY, Al-Antary TM, Awwad AM (2016) Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: effect on green peach. Environ Nanotech, Monit & Manage 6:95–98

    Google Scholar 

  • Ghodbane I, Nouri K, Hamdaoui O et al (2008) Kinetic and equilibrium study for the sorption of cadmium (II) ions from aqueous phase by eucalyptus bark. J Hazard Mater 152:148–158

    Article  CAS  Google Scholar 

  • Gokila S, Gomathi T, Sudha PN et al (2017) Removal of the heavy metal ion chromium (VI) using chitosan and alginate nanocomposites. Int J Biol Macromol 104(B):1459–1468. https://doi.org/10.1016/j.ijbiomac.2017.05.117

    Article  CAS  Google Scholar 

  • Gueu S, Yao B, Adouby K et al (2007) Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int J Environ Sci Technol 4:11–17

    Article  CAS  Google Scholar 

  • Guo H, Jiao T, Zhang Q et al (2015) Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment. Nanoscale Res Lett 10:272. https://doi.org/10.1186/s11671-015-0931-2

    Article  CAS  Google Scholar 

  • Hafshejani LD, Tangsir S, Daneshvaret E et al (2017) Optimization of fluoride removal from aqueous solution by Al2O3 nanoparticles. J Mol Liq 238:254–262

    Article  CAS  Google Scholar 

  • Hakami O, Zhang Y, Banks CJ (2015) Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Res 46:3913–3922

    Article  CAS  Google Scholar 

  • Halouane F, Oz Y, Meziane D et al (2017) Magnetic reduced graphene oxide loaded hydrogels: highly versatile and efficient adsorbents for dyes and selective Cr(VI) ions removal. J Colloid Interface Sci 507:360–369. https://doi.org/10.1016/j.jcis.2017.07.075

    Article  CAS  Google Scholar 

  • Hameed KS, Muthirulan P, Sundaram MM (2017) Adsorption of chromotrope dye onto activated carbons obtained from the seeds of various plants: equilibrium and kinetics studies. Arab J Chem 10(2):S2225–S2233. https://doi.org/10.1016/j.arabjc.2013.07.058

    Article  CAS  Google Scholar 

  • Harper TR, Kingham NW (1992) Removal of arsenic from wastewater using chemical precipitation methods. Water Environ Res 64:200–203

    Article  CAS  Google Scholar 

  • Harris HH, Pickering IJ, George GN (2003) The chemical form of mercury in fish. Science 301(5637):1203

    Article  CAS  Google Scholar 

  • Hayashi J, Kazehaya A, Muroyama K et al (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38(13):1873–1878. https://doi.org/10.1016/S0008-6223(00)00027-0

    Article  CAS  Google Scholar 

  • Hesami F, Bina B, Ebrahimi A, Amin MM (2013) Arsenic removal by coagulation using ferric chloride and chitosan from water. Int J Environ Health Eng 2(17). https://doi.org/10.4103/2277-9183.110170

  • Ho YS, Chiu WT, Wang CC (2005) Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto Miswak leaves as a natural adsorbent. Bioresour Technol 96:1285–1291

    Google Scholar 

  • Hossain M, Ngo HH, Guo WS (2012) Adsorption and desorption of copper(II) ions onto garden grass. Bioresour Technol 121:386–395

    Article  CAS  Google Scholar 

  • Hubadillah SK, Othman MHD, Harun Z et al (2017) A novel green ceramic hollow fiber membrane (CHFM) derived from rice husk ash as combined adsorbent-separator for efficient heavy metals removal. Ceram Int 43(5):4716–4720. https://doi.org/10.1016/j.ceramint.2016.12.122

    Article  CAS  Google Scholar 

  • Hussain MD, Haque MA, Islam MM et al (2001) Approaches for removal of arsenic from tubewell water for drinking purpose. In: Feroze Ahmed M et al (eds) Technologies for arsenic removal from drinking water. A compilation of papers presented at the international workshop on technologies for arsenic removal from drinking water. Bangladesh University of Engineering and Technology, Dhaka, Bangladesh and the United Nations University, Tokyo, May 2001

    Google Scholar 

  • Imamoglu M, Tekir O (2008) Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination 228:108–113

    Article  CAS  Google Scholar 

  • Islam M, Patel RK (2008) Polyacrylamide thorium (IV) phosphate as an important lead selective fibrous ion exchanger: synthesis, characterization and removal study. J Hazard Mater 156:509–520

    Article  CAS  Google Scholar 

  • Jafari MH, Mahvi A, Jonidi JA (2014) Removal of lead and zinc from battery industry wastewater using electrocoagulation process: influence of direct and alternating current by using iron and stainless steel rod electrodes. Sep Purif Technol 135:165–175

    Article  CAS  Google Scholar 

  • Jassal V, Shanker U, Gahlota S (2016) Green synthesis of some iron oxide nanoparticles and their interaction with 2-Amino, 3-Amino and 4-aminopyridines. Mater Today: Proc 3:1874–1882

    Article  Google Scholar 

  • Jawad AH, Sabar S, Ishak MAM et al (2017) Microwave-assisted preparation of mesoporous-activated carbon from coconut (Cocos nucifera) leaf by H3PO4 activation for methylene blue adsorption. Chem Eng Commun 204(10):1143–1156

    Article  CAS  Google Scholar 

  • Jia Y, Wu C, Lee BW et al (2017) Magnetically separable sulfur-doped SnFe2O4/graphene nanohybrids for effective photocatalytic purification of wastewater under visible light. J Hazard Mater 338:447–457. https://doi.org/10.1016/j.jhazmat.2017.05.057

    Article  CAS  Google Scholar 

  • Jiao Y, Wan C, Li J (2016) Synthesis of carbon fiber aerogel from natural bamboo fiber and its application as a green high-efficiency and recyclable adsorbent. Mater Design 107:26–32. https://doi.org/10.1016/j.matdes.2016.06.015

    Article  CAS  Google Scholar 

  • Johari K, Saman N, Song ST (2016) Adsorption enhancement of elemental mercury by various surface modified coconut husk as eco-friendly low-cost adsorbents. Int Biodeterior Biodegradation 109:45–52. https://doi.org/10.1016/j.ibiod.2016.01.004

    Article  CAS  Google Scholar 

  • John AC, Ibironke LO, Adedeji V et al (2011) Equilibrium and kinetic studies of the biosorption of heavy metals (cadmium) on Cassia siamea bark. Am-Eur J Sci Res 6:123–130

    CAS  Google Scholar 

  • Jungcharoen P, O’Carroll D, Anotai J et al (2017) Synthesis of lignin-modified nanoscale zerovalent iron applied to arsenic removal. Full Paper Proc ECBA 3(9):1–6

    Google Scholar 

  • Kadirvelu K, Namasivayam C (2000) Agricultural byproduct as metal adsorbent: sorption of lead(II) from aqueous solution onto coir pith carbon. Environ Tech 21:1091–1097

    Article  CAS  Google Scholar 

  • Kagramanov GG, Farnosova EN, Kandelaki GI (2009) Heavy metal cationic wastewater treatment with membrane methods. In: Václavíková M, Vitale K, Gallios GP, Ivaničová L (eds) Water treatment technologies for the removal of high-toxicity pollutants. NATO science for peace and security series C: environmental security. Springer, Dordrecht, pp 61–84

    Chapter  Google Scholar 

  • Karthik K, Dhanuskodi S, Gobinath C et al (2017a) Andrographis paniculata extract mediated green synthesis of CdO nanoparticles and its electrochemical and antibacterial studies. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-017-6503-8

  • Karthik K, Dhanuskodi S, Kumar SP (2017b) Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities. Mater Lett 206:217–220. https://doi.org/10.1016/j.matlet.2017.07.004

    Article  CAS  Google Scholar 

  • Kepner B, Spotts J, Mintz E et al (1998) Removal of arsenic from drinking water with enhanced hybrid aluminas and composite metal oxide particles. In: International conference on arsenic pollution of groundwater: causes, effects, remedies, Dhaka Community Hospital, Dhaka, Bangladesh

    Google Scholar 

  • Khan MA, Alam MM, Naushad Mu et al (2015) Sol–gel assisted synthesis of porous nano-crystalline CoFe2O4 composite and its application in the removal of brilliant blue-R from aqueous phase: an ecofriendly and economical approach. Chem Eng J 279:416–424

    Article  CAS  Google Scholar 

  • Krishnaiah D, Joseph CG, Anisuzzaman SM et al (2017) Removal of chlorinated phenol from aqueous solution utilizing activated carbon derived from papaya (Carica papaya) seeds. Korean J Chem Eng 34:1377. https://doi.org/10.1007/s11814-016-0337-6

    Article  CAS  Google Scholar 

  • Krishnan KA, Anirudhan TS (2002) Uptake of heavy metals in batch systems by sulfurized steam activated carbon prepared from sugarcane bagasse pith. Ind Eng Chem Res 41:5085–5093

    Article  CAS  Google Scholar 

  • Kuang Y, Wang Q, Chen Z et al (2013) Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J Colloid Interface Sci 410:67–73

    Article  CAS  Google Scholar 

  • Kumar A, Jena HM (2015) High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation. Appl Surf Sci 356:753–761. https://doi.org/10.1016/j.apsusc.2015.08.074

    Article  CAS  Google Scholar 

  • Kumar A, Jena HM (2016) Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results Phys 6:651–658. https://doi.org/10.1016/j.rinp.2016.09.012

    Article  Google Scholar 

  • Kumar A, Jena HM (2017a) Adsorption of Cr(VI) from aqueous phase by high surface area activated carbon prepared by chemical activation with ZnCl2. Process Saf Environ Prot 109:63–71. https://doi.org/10.1016/j.psep.2017.03.032

    Article  CAS  Google Scholar 

  • Kumar A, Jena HM (2017b) Adsorption of Cr(VI) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4. J Environ Chem Eng 5(2):2032–2041. https://doi.org/10.1016/j.jece.2017.03.035

    Article  CAS  Google Scholar 

  • Kumar U (2006) Agricultural products and by-products as a low cost adsorbent for heavy metal removal from water and waste-water: a review. Sci Res Essays 1:33–37

    Google Scholar 

  • Kumar A, Sharma G, Naushad Mu et al (2015) SPION/β-cyclodextrin core–shell nanostructures for oil spill remediation and organic pollutant removal from waste water. Chem Eng J 280:175–187

    Article  CAS  Google Scholar 

  • Kumar A, Kumar A, Sharma G et al (2017) Sustainable nano-hybrids of magnetic biochar supported gC3N4/FeVO4 for solar powered degradation of noxious pollutants-synergism of adsorption, photocatalysis & photo-ozonation. J Clean Prod 165:431–451

    Article  CAS  Google Scholar 

  • Lam SS, Liew RK, Wong YM et al (2017) Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. J Clean Prod 162:1376–1387. https://doi.org/10.1016/j.jclepro.2017.06.131

    Article  CAS  Google Scholar 

  • Leyva-Ramos R, Rangel-Mendez JR, Mendoza-Barron J et al (1997) Adsorption of cadmium (II) from aqueous solution onto activated carbon. Water Sci Technol 35:205–211

    Article  CAS  Google Scholar 

  • Li K, Wang X (2008) Adsorptive removal of Pb(II) by activated carbon prepared from Spartina alterniflora: equilibrium, kinetics and thermodynamics. Bioresour Technol 100(2009):2810–2815

    Google Scholar 

  • Li C, Zhuang Z, Jin X, Chena Z (2017a) A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract. Appl Surf Sci 422:469–474

    Article  CAS  Google Scholar 

  • Li X, Peng W, Jia Y et al (2017b) Removal of cadmium and zinc from contaminated wastewater using Rhodobacter sphaeroides. Water Sci Techno 75:2489–2498

    Article  CAS  Google Scholar 

  • Ma Y-X, Kou Y-L, Xing D et al (2017) Synthesis of magnetic graphene oxide grafted polymaleicamide dendrimer nanohybrids for adsorption of Pb(II) in aqueous solution. J Hazard Mater 340:407–416. https://doi.org/10.1016/j.jhazmat.2017.07.026

    Article  CAS  Google Scholar 

  • Machida M, Yamazaki R, Aikawa M et al (2005) Role of minerals in carbonaceous adsorbents for removal of Pb(II) ions from aqueous solution. Sep Purif Technol 46:88–94

    Article  CAS  Google Scholar 

  • Martinez-Juarez RVM, Cardenas-Gonzalez JF, Moctezuma-Zarate MG (2013) Biosorption of arsenic(III) from aqueous solutions by modified fungal biomass of Paecilomyces sp. Bioinorg Chem. https://doi.org/10.1155/2013/376780

    Article  Google Scholar 

  • Mohan D, Kumar H, Sarswat A et al (2014) Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem Eng J 236:513–528. https://doi.org/10.1016/j.cej.2013.09.057

    Article  CAS  Google Scholar 

  • Mondal MK, Garg R (2017) A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials. Environ Sci Pollut Res 24:13295–13306

    Article  CAS  Google Scholar 

  • Mureseanu M, Reiss A, Cioatera N et al (2010) Mesoporous silica functionalized with 1-furoyl thiourea urea for Hg(II) adsorption from aqueous media. J Hazard Mater 182:197–203

    Article  CAS  Google Scholar 

  • Naushad M, ALOthman ZA, Khan MR et al (2014) Equilibrium, kinetics and thermodynamic studies for the removal of organophosphorus pesticide using Amberlyst-15 resin: quantitative analysis by liquid chromatography-mass spectrometry. J Ind Eng Chem 20:4393–4400. https://doi.org/10.1016/j.jiec.2014.02.006

    Article  CAS  Google Scholar 

  • Naushad M, Ahamad T, Al-Maswari BM et al (2017) Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem Eng J 330:1351–1360. https://doi.org/10.1016/j.cej.2017.08.079

    Article  CAS  Google Scholar 

  • Nava OJ, Luque PA, Gomez-Gutierrez CM et al (2017a) Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis. J Mol Struct 1134:121–125

    Article  CAS  Google Scholar 

  • Nava OJ, Soto-Robles CA, Gomez-Gutierrez CM et al (2017b) Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J Mol Struct 1147:1–6

    Article  CAS  Google Scholar 

  • Nayak AK, Pal A (2017) Green and efficient biosorptive removal of methylene blue by Abelmoschus esculentus seed: process optimization and multi-variate modeling. J Environ Manage 200:145–159. https://doi.org/10.1016/j.jenvman.2017.05.045

    Article  CAS  Google Scholar 

  • Ocsoy I, Temiz M, Celik C et al (2017) Green approach for formation of silver nanoparticles on magnetic graphene oxide and highly effective antimicrobial activity and reusability. J Mol Liq 227:147–152

    Article  CAS  Google Scholar 

  • Okman I, Karagöz S, Tay T et al (2014) Activated carbons from grape seeds by chemical activation with potassium carbonate and potassium hydroxide. Appl Surf Sci 293:138–142. https://doi.org/10.1016/j.apsusc.2013.12.117

    Article  CAS  Google Scholar 

  • Oliveira WE, Franca AS, Oliveira LS, Rocha SD (2008) Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J Hazard Mater 152:1073–1081

    Article  CAS  Google Scholar 

  • Papa S, Šolević T, Jelena K et al (2017) Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water. J Clean Prod 162:958–972

    Article  CAS  Google Scholar 

  • Parson S, Jefferson B (2006) Introduction to potable water treatment processes. Blackwell Publishing Ltd, UK

    Book  Google Scholar 

  • Peng W, Li H, Liu Y, Song S (2017) A review on heavy metal ions adsorption from water by graphene oxide and its composites. J Mol Liq 230:496–504

    Article  CAS  Google Scholar 

  • Postai DL, Demarchi CA, Zanatta F (2016) Adsorption of Rhodamine B and methylene blue dyes using waste of seeds of Aleurites moluccana, a low cost adsorbent. Alex Eng J 55(2):1713–1723. https://doi.org/10.1016/j.aej.2016.03.017

    Article  Google Scholar 

  • Quintanilla DP, Hierro I, Fajardo M et al (2006) 2-Mercaptothiazoline modified mesoporous silica for mercury removal from aqueous media. J Hazard Mater 134:245–256

    Article  CAS  Google Scholar 

  • Raj KR, Kardam A, Srivastava S (2013) PEI modified Leucaena leucocephala seed powder, a potential biosorbent for the decontamination of arsenic species from water bodies: bioremediation. Appl Water Sci 3:327–333

    Article  CAS  Google Scholar 

  • Reck IM, Paixão RM, Bergamasco R et al (2018) Removal of tartrazine from aqueous solutions using adsorbents based on activated carbon and Moringa oleifera seeds. J Clean Prod 171:85–97. https://doi.org/10.1016/j.jclepro.2017.09.237

    Article  CAS  Google Scholar 

  • Reddy DHK, Yun Y-S (2016) Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord Chem Rev 315:90–111. https://doi.org/10.1016/j.ccr.2016.01.012

    Article  CAS  Google Scholar 

  • Ricordel S, Taha S, Cisse I et al (2001) Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep Purif Technol 24:389–401

    Article  CAS  Google Scholar 

  • Roy E, Patra S, Madhuri R et al (2016) Europium doped magnetic graphene oxide-MWCNT nanohybrid for estimation and removal of arsenate and arsenite from real water samples. Chem Eng J 299:244–254. https://doi.org/10.1016/j.cej.2016.04.051

    Article  CAS  Google Scholar 

  • Sahu RC, Patel R, Ray BC (2011) Adsorption of Zn(II) on activated red mud: neutralized by CO2. Desalination 266:93–97

    Article  CAS  Google Scholar 

  • Salem NM, Awwad AM, Al-Dujahi AH (2012) Biosorption of Pb(II), Zn(II) and Cd(II) by Eriobotrya japonica Loquat bark. Int J Environ Prot 2:1–7

    Google Scholar 

  • Santhosh C, Daneshvar E, Kollu P et al (2017) Magnetic SiO2@CoFe2O4 nanoparticles decorated on graphene oxide as efficient adsorbents for the removal of anionic pollutants from water. Chem Eng J 322:472–487. https://doi.org/10.1016/j.cej.2017.03.144

    Article  CAS  Google Scholar 

  • Sartape AS, Mandhare AM, Jadhav VV (2017) Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab J Chem 10:S3229–S3238. https://doi.org/10.1016/j.arabjc.2013.12.019

    Article  CAS  Google Scholar 

  • Seki K, Saito N, Aoyama M (1997) Removal of heavy metal ions from solutions by coniferous barks. Wood Sci Technol 31:441–447

    Article  CAS  Google Scholar 

  • Senapati K, Alam I (2001) Apyron arsenic treatment unit—reliable technology for arsenic safe water. In: Feroze Ahmed M et al (eds) Technologies for arsenic removal from drinking water. A compilation of papers presented at the international workshop on technologies for arsenic removal from drinking water. Bangladesh University of Engineering and Technology, Dhaka, Bangladesh and the United Nations University, Tokyo, May 2001

    Google Scholar 

  • Shahat A, Awual MR, Khaleque MA et al (2015) Large-pore diameter nano-adsorbent and its application for rapid lead(II) detection and removal from aqueous media. Chem Eng J 273:286–295

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M (2017) Green synthesis of iron hexacyanoferrate nanoparticles: potential candidate for the degradation of toxic PAHs. J Environ Chem Eng 5:4108–4120

    Article  CAS  Google Scholar 

  • Sharma VK, Dutta PK, Ray AK (2007) Review of kinetics of chemical and arsenic(III) as influenced by pH. Environ Sci Health 42:997

    Article  CAS  Google Scholar 

  • Sharma JK, Srivastavaa P, Ameen S et al (2017) Phytoconstituents assisted green synthesis of cerium oxide nanoparticles for thermal decomposition and dye remediation. Mat Res Bull 91:98–107

    Article  CAS  Google Scholar 

  • Shehzad K, Xie C, He J et al (2018) Facile synthesis of novel calcined magnetic orange peel composites for efficient removal of arsenite through simultaneous oxidation and adsorption. J Colloid Int Sci 511:155–164. https://doi.org/10.1016/j.jcis.2017.09.110

    Article  CAS  Google Scholar 

  • Shen K, Gondal MA (2017) Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. J Saudi Chem Soc 21(1):S120–S127. https://doi.org/10.1016/j.jscs.2013.11.005

    Article  CAS  Google Scholar 

  • Shen B, Tian L, Li F et al (2017) Elemental mercury removal by the modified bio-char from waste tea. Fuel 187:189–196. https://doi.org/10.1016/j.fuel.2016.09.059

    Article  CAS  Google Scholar 

  • Singh KK, Singh AK, Hasan SH (2006) Low cost bio-sorbent ‘wheat bran’ for the removal of cadmium from wastewater: kinetic and equilibrium studies. Bioresour Technol 97:994–1001

    Article  CAS  Google Scholar 

  • Singh C, Sahu J, Mahalik K et al (2008) Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid. J Hazard Mater 153:221–228

    Article  CAS  Google Scholar 

  • Smily JRMB, Sumithra PA (2017) Optimization of chromium biosorption by fungal adsorbent, Trichoderma sp. BSCR02 and its desorption studies. HAYATI J Biosci. https://doi.org/10.1016/j.hjb.2017.08.005

  • Son E-B, Poo K-M, Chang J-S et al (2018) Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Sci Total Environ 615:161–168. https://doi.org/10.1016/j.scitotenv.2017.09.171

    Article  CAS  Google Scholar 

  • Sreekanth TVM, Jung M, Eom I (2016) Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity. Appl Surf Sci 361:102–106

    Article  CAS  Google Scholar 

  • Stevens MGF, Batlokwa BS (2017) Environmentally friendly and cheap removal of lead (II) and zinc (II) from wastewater with fish scales waste remains. Int J Chem 9(4). https://doi.org/10.5539/ijc.v9n4p22

    Article  CAS  Google Scholar 

  • Su C, Puls RW (2001) Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ Sci Technol 35:1487–1492

    Article  CAS  Google Scholar 

  • Subramaniam R, Ponnusamy SK (2015) Novel adsorbent from agricultural waste (cashew NUT shell) for methylene blue dye removal: optimization by response surface methodology. Water Res Ind 11:64–70. https://doi.org/10.1016/j.wri.2015.07.002

    Article  Google Scholar 

  • Sulak MT, Demirbas E, Kobya M (2007) Removal of Astrazon Yellow 7GL from aqueous solutions by adsorption onto wheat bran. Bioresour Technol 98:2590–2598

    Article  CAS  Google Scholar 

  • Tatarchuk T, Bououdina M, Macyk W et al (2017a) Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res Lett 12(1):141–151. https://doi.org/10.1186/s11671-017-1899-x

    Article  CAS  Google Scholar 

  • Tatarchuk T, Bououdina M, Paliychuk N et al (2017b) Structural characterization and antistructure modeling of cobalt-substituted zinc ferrites. J Alloys Compd 694:777–791. https://doi.org/10.1016/j.jallcom.2016.10.067

    Article  CAS  Google Scholar 

  • Tatarchuk T, Bououdina M, Vijaya JJ et al (2017c) Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications. In: Fesenko O, Yatsenko L (eds) Nanophysics, nanomaterials, interface studies, and applications. NANO 2016. In: Springer proceedings in physics, vol 195. Springer, pp 305–325. https://doi.org/10.1007/978-3-319-56422-7_22

    Google Scholar 

  • Tatarchuk TR, Paliychuk ND, Bououdina M et al (2017d) Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2017.10.103

    Article  Google Scholar 

  • Taty-Costodes VC, Fauduet H, Porte C et al (2003) Removal of Cd(II) and Pb(II) ions from aqueous solutions by adsorption onto sawdust of Pinus sylvestris. J Hazard Mater B 105:121–142

    Article  CAS  Google Scholar 

  • Thitame PV, Shukla SR (2017) Removal of lead (II) from synthetic solution and industry wastewater using almond shell activated carbon. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.12616

    Article  Google Scholar 

  • Tinas H, Caliskan E, Ozbek N et al (2016) Preparation of Fe3O4@montmorillonite composite as an effective sorbent for the removal of lead and cadmium from wastewater samples. Turk J Chem 40:974–978

    Article  CAS  Google Scholar 

  • Tofan L, Paduraru C, Robu B et al (2012) Removal of Cd(II) ions from aqueous solution by retention on pine bark. Environ Eng Manage J 11:199–205

    Article  CAS  Google Scholar 

  • Tofighy MA, Mohammadi T (2012) Chem Eng Res Des 90:1815–1822

    Google Scholar 

  • Tokunaga S, Wasay SA, Park SW (1997) Removal of arsenic (V) ion from aqueous solutions by Lanthanum compounds. Water Sci Technol 35(7):71–78

    Article  CAS  Google Scholar 

  • Tran HT, Vu ND, Matsukawa M et al (2016) Heavy metal biosorption from aqueous solutions by algae inhabiting rice paddies in Vietnam. J Environ Chem Eng 4(2):2529–2535. https://doi.org/10.1016/j.jece.2016.04.038

    Article  CAS  Google Scholar 

  • Upadhyay RK, Soin N, Bhattacharya G, Saha S, Barman A, Roy SS (2015) Grape extract assisted green synthesis of reduced graphene oxide for water treatment application. Mater Lett 160:355–358

    Article  CAS  Google Scholar 

  • Vaibhav V, Vijayalakshmi U, Mohana S, Amiri M, Salavati-Niasari M, Akbari A, Gholami T (2015) Agricultural waste as a source for the production of silica nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 139:515–520

    Article  CAS  Google Scholar 

  • Vasudevan S, Lakshmi J, Sozhan G (2012) Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water. Environ Sci Pollut Res 19(7):2734–2744

    Article  CAS  Google Scholar 

  • Vendamanib VS, Tripathia A, Singh MK, Pathak AP, Tiwaria A, Chettri P (2017) Green synthesis of silver nanoparticle-reduced graphene oxide using Psidium guajava and its application in SERS for the detection of methylene blue. Appl Surf Sci 406:312–318

    Article  CAS  Google Scholar 

  • Verma SP, Sarkar B (2017) Rhamnolipid based micellar-enhanced ultrafiltration for simultaneous removal of Cd(II) and phenolic compound from wastewater. Chem Eng J 319:131–142

    Article  CAS  Google Scholar 

  • Verma A, Kumar S, Kumar S (2016) Biosorption of lead ions from the aqueous solution by Sargassum filipendula: equilibrium and kinetic studies. J Environ Chem Eng 4(4):4587–4599. https://doi.org/10.1016/j.jece.2016.10.026

    Article  CAS  Google Scholar 

  • Vidya C, Chandra Prabhab MN, Antony Raj MAL (2016) Green mediated synthesis of zinc oxide nanoparticles for the photocatalytic degradation of Rose Bengal dye. Environ Nanotechnol, Monit Manage 6:134–138

    Article  Google Scholar 

  • Vinh NV, Zafar M, Behera SK et al (2015) Arsenic(III) removal from aqueous solution by raw and zinc loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies. Int J Environ Sci Technol 12:1283–1294

    Article  CAS  Google Scholar 

  • Wahi R, Ngaini Z (2009) Removal of mercury, lead and copper from aqueous solution by activated carbon of palm oil empty fruit bunch. World Appl Sci J 5:84–91

    Google Scholar 

  • Wang L, Zhang F-S (2017) Characterization of a novel sound absorption material derived from waste agricultural film. Constr Build Mater 157:237–243. https://doi.org/10.1016/j.conbuildmat.2017.07.192

    Article  Google Scholar 

  • Wang H, Lin SH, Juang RS (2003) Removal of heavy metals from aqueous solutions using various low-cost adsorbents. J Hazard Mater 102:291–302

    Article  CAS  Google Scholar 

  • Wang L, Zhu L, Bing N, Wang L (2017a) Facile green synthesis of Pd/N-doped carbon nanotubes catalysts and their application in Heck reaction and oxidation of benzyl alcohol. J Phys Chem Solids 107:125–130

    Article  CAS  Google Scholar 

  • Wang W, Cai K, Wu X et al (2017b) A novel poly(m-phenylenediamine)/reduced graphene oxide/nickel ferrite magnetic adsorbent with excellent removal ability of dyes and Cr(VI). J Alloys Compd 722:532–543. https://doi.org/10.1016/j.jallcom.2017.06.069

    Article  CAS  Google Scholar 

  • Wen H-F, Yang C, Yu D-G et al (2016) Electrospun zein nanoribbons for treatment of lead-contained wastewater. Chem Eng J 290:263–272

    Article  CAS  Google Scholar 

  • WHO/UNICEF (2000) Global water supply and sanitation assessment report 2000, WHO, Geneva, Switzerland

    Google Scholar 

  • Xia Z, Baird L, Zimmerman N, Yeager M (2017) Heavy metal ion removal by thiol functionalized aluminum oxide hydroxide nanowhiskers. Appl Surf Sci 416:565–573

    Article  CAS  Google Scholar 

  • Xu D, Tan X, Chen C et al (2008) Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotube. J Hazard Mater 154:407–416

    Article  CAS  Google Scholar 

  • Yadav AK, Kaushik CP, Haritash AK et al (2006) Defluoridation of groundwater using brick powder as an adsorben. J Hazard Mater 128:289–293

    Article  CAS  Google Scholar 

  • Yang F, Sun L, Xie W et al (2017) Nitrogen-functionalization biochars derived from wheat straws via molten salt synthesis: an efficient adsorbent for atrazine removal. Sci Total Environ 607–608:1391–1399. https://doi.org/10.1016/j.scitotenv.2017.07.020

    Article  CAS  Google Scholar 

  • Yang Q, Ren SS, Zhao Q et al (2018) Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem Eng J 333:49–57. https://doi.org/10.1016/j.cej.2017.09.099

    Article  CAS  Google Scholar 

  • Yap MW, Mubarak NM, Sahu JN et al (2017) Microwave induced synthesis of magnetic biochar from agricultural biomass for removal of lead and cadmium from wastewater. J Ind Eng Chem 45:287–295

    Article  CAS  Google Scholar 

  • Zare-Dorabei R, Ferdowsi SM, Barzin A et al (2016) Highly efficient simultaneous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,20-dipyridylamine: central composite design optimization. Ultrason Sonochem 32:265–276

    Article  CAS  Google Scholar 

  • Zhang J, Ding T, Zhang Z et al (2015) Enhanced adsorption of trivalent arsenic from water by functionalized diatom silica shells. PLoS ONE 10(4):e0123395. https://doi.org/10.1371/journal.pone.0123395A

    Article  Google Scholar 

  • Zhang Y, Cao B, Zhao L et al (2018) Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Appl Surf Sci 427(A):147–155. https://doi.org/10.1016/j.apsusc.2017.07.237

    Article  CAS  Google Scholar 

  • Zhou Q, Liao B, Lin L et al (2018) Adsorption of Cu(II) and Cd(II) from aqueous solutions by ferromanganese binary oxide–biochar composites. Sci Total Environ 615:115–122. https://doi.org/10.1016/j.scitotenv.2017.09.220

    Article  CAS  Google Scholar 

  • Zhu Y, Hu J, Wang J (2012) Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate modified magnetic chitosan. J Hazard Mater 221:155–161

    Article  CAS  Google Scholar 

  • Zolgharnein J, Shahmoradi A, Bagtash M et al (2017) Chemometrics optimization for simultaneous adsorptive removal of ternary mixture of Cu(II), Cd(II), and Pb(II) by Fraxinus tree leaves. J Chemom. https://doi.org/10.1002/cem.2935

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetiana Tatarchuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tatarchuk, T., Bououdina, M., Al-Najar, B., Bitra, R.B. (2019). Green and Ecofriendly Materials for the Remediation of Inorganic and Organic Pollutants in Water. In: Naushad, M. (eds) A New Generation Material Graphene: Applications in Water Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-75484-0_4

Download citation

Publish with us

Policies and ethics