Skip to main content

Recent Developments in Adsorption of Dyes Using Graphene Based Nanomaterials

  • Chapter
  • First Online:
A New Generation Material Graphene: Applications in Water Technology

Abstract

Dyes are frequently let out into the environment along with wastewater sans necessary treatment. Fast, cost-effective, scientific and suitable elimination of dyes from wastewaters has been an important problem for researchers. Adsorption technique is a robust, well studied, widely employed and promising water treatment method. In the last decade, nanocarbon based adsorbents have gained attention in water treatment. These adsorbents are usually produced from low cost substrate and are found to be highly efficient than other adsorbents. Recently, graphene based nanomaterials are widely used as adsorbents to sorb various toxic organic contaminants from aqueous solutions. It showed high efficiency due to its chemical stability, structure, surface area and surface functional groups. So graphene are called as ‘miracle material’. Recently nanographene composites are proven to be a likely adsorbent for eliminating contaminants from the industrial effluents. In this chapter, we have presented briefly the synthesis of graphene and its other variants viz., GO, rGO and nano graphene composites. This chapter presents a small introduction to adsorption principles and adsorption isotherms. It explains the synthesis and use of nano graphene materials for the remediation of dyes. It also consolidates the recent literature available for dye adsorption using graphene materials and its mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adak A, Bandyopadhyay M, Pal A (2005) Removal of crystal violet dye from wastewater by surfactant-modified alumina. Sep Purif Technol 44(2):139–144

    Article  CAS  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water or wastewater using different types of nano materials. Adv Mater Sci Eng. https://doi.org/10.1155/2014/825910 (Hindawi Publishing Corporation)

    Article  Google Scholar 

  • Anbia M, Samira S (2012) Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes Pigm 94:1–9

    Article  CAS  Google Scholar 

  • Ansari MO, Kumar R, Ansari SA, Ansari SP, Barakat MA, Alshahrie A, Cho MH (2017) Anion selective pTSA doped polyaniline@ graphene oxide-multiwalled carbon nanotube composite for Cr (VI) and Congo red adsorption. J Colloid Interface Sci 496:407–415

    Article  CAS  Google Scholar 

  • Aoki H, Dresselhaus MS (2014) Physics of graphene. Nano science and technology. Springer International Publishing

    Google Scholar 

  • Baek MH, Ijagbemi CO, Se-Jin O, Kim DS (2010) Removal of Malachite Green from aqueous solution using degreased coffee bean. J Hazard Mater 176(1):820–828

    Article  CAS  Google Scholar 

  • Bradder P, Ling SK, Wang S, Liu S (2010) Dye adsorption on layered graphite oxide. J Chem Eng Data 56(1):138–141

    Article  CAS  Google Scholar 

  • Cardoso NF, Lima EC, Royer B, Bach MV, Dotto GL, Pinto LAA, Calvete T (2012) Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J Hazard Mater 241–242:146–153

    Article  CAS  Google Scholar 

  • Carneiro PA, Umbuzeiro GA, Oliveira DP, Zanoni MVB (2010) Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J Hazard Mater 174:694–699

    Article  CAS  Google Scholar 

  • Chen Y, Zhang B, Liu G, Zhuan X, Kang ET (2012) Graphene and its derivatives: switching ON and OFF. Chem Soc Rev 41:4688–4707

    Article  CAS  Google Scholar 

  • Cheng JS, Du J, Zhu W (2012) Facile synthesis of three-dimensional chitosan–graphene mesostructures for reactive black 5 removal. Carbohyd Polym 88(1):61–67

    Article  CAS  Google Scholar 

  • Cheng ZL, Li YX, Liu Z (2017) 0 Novel adsorption materials based on graphene oxide/Beta zeolite composite materials and their adsorption performance for rhodamine B. J Alloy Comp 708:255–263

    Article  CAS  Google Scholar 

  • Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 204:35–56

    Article  CAS  Google Scholar 

  • Clarke EA, Anliker R (1980) Organic dyes and pigments. Anthropogenic compounds. Springer, Berlin, pp 181–215

    Book  Google Scholar 

  • De Lima ROA, Bazo AP, Salvadori DMF, Rech CM, Oliveira DP, Umbuzeiro GA (2007) Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat Res Genet Toxicol Environ Mutagen 626:53–60

    Article  CAS  Google Scholar 

  • De Oliveira RAG, Zanoni TB, Bessegato GG, Oliveira DP, Umbuzeiro GA, Zanoni MVB (2014) The chemistry and toxicity of hair dyes. Quim Nova 37:1037–1046

    Google Scholar 

  • Deng JH, Zhang XR, Zeng GM, Gong JL, Niu QY, Liang J (2013) Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem Eng J 226:189–200

    Article  CAS  Google Scholar 

  • Doğan M, Alkan M (2003) Removal of methyl violet from aqueous solution by perlite. J Colloid Interface Sci 267(1):32–41

    Article  CAS  Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  • Du Q, Sun J, Li Y, Yang X, Wang X, Wang Z, Xia L (2014) Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles. Chem Eng J 245:99–106

    Article  CAS  Google Scholar 

  • El Haddad M, Mamouni R, Saffaj N, Lazar S (2012) Removal of a cationic dye–Basic Red 12–from aqueous solution by adsorption onto animal bone meal. J Assoc Arab Univ Basic Appl Sci 12(1):48–54

    Google Scholar 

  • Fan ZJ, Kai W, Yan J, Wei T, Zhi LJ, Feng J, Ren YM, Song LP, Wei F (2010) Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 5(1):191–198

    Article  CAS  Google Scholar 

  • Freundlich H (1906) Adsorption in solution. Phys Chem Soc 40:1361–1368

    Google Scholar 

  • Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  • Geng Z, Lin Y, Yu X, Shen Q, Ma L, Li Z, Pan N, Wang X (2012) Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide–Fe3O4 nanoparticles as an easily regenerative adsorbent. J Mater Chem 22(8):3527–3535

    Article  CAS  Google Scholar 

  • González JA, Villanueva ME, Piehl LL, Copello GJ (2015) Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: adsorption and desorption study. Chem Eng J 280:41–48

    Article  CAS  Google Scholar 

  • Graphene, complied by the class for physics of the royal Swedish academy of sciences, 2010. www.nobelprize.org/nobel_prizes/physics/laureates/2010/advanced-physicsprize2010.pdf

  • Gupta VK, Mittal A, Jain R, Megha M, Shalini S (2006) Adsorption of safranin-t from wastewater using waste materials—activated carbon and activated rice husks. J Colloid Interface Sci 303:80–86

    Article  CAS  Google Scholar 

  • Gupta SS, Sreeprasad TS, Maliyekkal SM, Das SK, Pradeep T (2012) Graphene from sugar and its application in water purification. Appl Mater Interfaces 4:4156–4163

    Article  CAS  Google Scholar 

  • Hamdaoui O (2006) Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. J Hazard Mater 135:264–273

    Article  CAS  Google Scholar 

  • Han M, Yun J, Kim H (2012) Effect of surface modification of graphene oxide on photochemical stability of poly(vinyl alcohol)/graphene oxide composite. J Ind Eng Chem 18:752–756

    Article  CAS  Google Scholar 

  • Hosseinabadi-Farahani Z, Mahmoodi NM, Hosseini-Monfared H (2015) Preparation of surface functionalized graphene oxide nanosheet and its multicomponent dye removal ability from wastewater. Fiber Polym 16(5):1035–1047

    Article  CAS  Google Scholar 

  • Hu L, Li Y, Zhang X, Wang Y, Cui L, Wei Q, Ma H, Yan L, Du B (2016) Fabrication of magnetic water-soluble hyperbranched polyol functionalized graphene oxide for high-efficiency water remediation. Sci Rep 6

    Google Scholar 

  • Huang Y, Chen X (2015) Carbon nanomaterial-based composites in wastewater purification. Nano Life 4:1441006-1–1441006-11

    Google Scholar 

  • Huang X, Yin ZY, Wu SX, Qi XY, He QY, Zhang QC, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902

    Article  CAS  Google Scholar 

  • Huang H, Lu S, Zhang X, Shao Z (2012a) Glucono-δ-lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel-sol transition. Soft Matter 8:4609–4615

    Article  CAS  Google Scholar 

  • Huang X, Qi X, Boey F, Zhang H (2012b) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  CAS  Google Scholar 

  • Huang R, Liu Q, Huo J, Yang B (2017) Adsorption of methyl orange onto protonated cross-linked chitosan. Arab J Chem 10:24–32

    Article  CAS  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  • Iram M, Guo C, Guan Y, Ishfaq A, Liu H (2010) Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J Hazard Mater 181(1):1039–1050

    Article  CAS  Google Scholar 

  • Jauris IM, Matos CF, Saucier C, Lima EC, Zarbin AJG, Fagan SB, Machado FM, Zanela I (2016) Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Phys Chem Chem Phys 19:1526–1536

    Article  CAS  Google Scholar 

  • Kazim S, Ali V, Zulfequar M, Haq MM, Husain M (2007) Electrical transport properties of poly [2-methoxy-5-(2′-ethyl hexyloxy)-1, 4-phenylene vinylene] thin films doped with acridine orange dye. Physica B 393(1):310–315

    Article  CAS  Google Scholar 

  • Khaloo SS, Ahmadi Marzaleh M, Kavousian M, Bahramzadeh Gendeshmin S (2016) Graphene oxide coated wad as a new sorbent in fixed bed column for the removal of crystal violet from contaminated water. Sep Sci Technol 51(1):1–10

    Article  CAS  Google Scholar 

  • Kurade MB, Waghmode TR, Patil SM, Jeon BH, Govindwar SP (2017) Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium. Chem Eng J 307:1026–1036

    Article  CAS  Google Scholar 

  • Kurniawan TA, Lo WH (2009) Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment. Water Res 43:4079–4091

    Article  CAS  Google Scholar 

  • Kyzas GZ, Travlou NA, Kalogirou O, Deliyanni EA (2013) Magnetic graphene oxide: effect of preparation route on reactive black 5 adsorption. Mater 6(4):1360–1376

    Article  CAS  Google Scholar 

  • Kyzas GZ, Deliyanni EA, Matis KA (2014) Graphene oxide and its application as an adsorbent for wastewater treatment. J Chem Technol Biotechnol 89:196–205

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Leechart P, Nakbanpote W, Thiravetyan P (2009) Application of ‘waste’ wood-shaving bottom ash for adsorption of azo reactive dye. J Environ Manag 90:912–920

    Article  CAS  Google Scholar 

  • Leme DM, de Oliveira GAR, Meireles G, dos Santos TC, Zanoni MVB, de Oliveira DP (2014) Genotoxicological assessment of two reactive dyes extracted from cotton fibres using artificial sweat. Toxicol In Vitro 28:31–38

    Article  CAS  Google Scholar 

  • Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170–1171

    Article  CAS  Google Scholar 

  • Li C, Dong Y, Yang J, Li Y, Huang C (2014a) Modified nano-graphite/Fe3O4 composite as efficient adsorbent for the removal of methyl violet from aqueous solution. J Mol Liq 196:348–356

    Article  CAS  Google Scholar 

  • Li L, Li X, Duan H, Wang X, Luo C (2014b) Removal of Congo Red by magnetic mesoporous titanium dioxide–graphene oxide core–shell microspheres for water purification. Dalton Trans 43(22):8431–8438

    Article  CAS  Google Scholar 

  • Lima EC, Adebayo MA, Machado FM (2015) Kinetic and equilibrium models of adsorption. In: Bergmann CP, Machado FM (eds) Carbon nanomaterials as adsorbents for environmental and biological applications. Springer, Berlin, pp 33–69

    Chapter  Google Scholar 

  • Liu Y, Xu H, Yang SF, Tay JH (2003) A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules. J Biotechnol 102:233–239

    Article  CAS  Google Scholar 

  • Liu F, Chung S, Oh G, Seo TS (2012) Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl Mater Interfaces 4(2):922–927

    Article  CAS  Google Scholar 

  • Liu A, Zhou W, Shen K, Liu J, Zhang X (2015a) One-pot hydrothermal synthesis of hematite-reduced graphene oxide composites for efficient removal of malachite green from aqueous solution. RSC Adv 5(22):17336–17342

    Article  CAS  Google Scholar 

  • Liu K, Li H, Wang Y, Gou X, Duan Y (2015b) Adsorption and removal of rhodamine B from aqueous solution by tannic acid functionalized graphene. Colloids Surf, A 477:35–41

    Article  CAS  Google Scholar 

  • Lucas MS, Peres JA (2006) Decolorization of the azo dye reactive black 5 by Fenton and photo-Fenton oxidation. Dyes Pigm 71(3):236–244

    Article  CAS  Google Scholar 

  • Machado FM, Bergmann CP, Fernandes THM, Lima EC, Royer B, Calvete T, Fagan SB (2011) Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon. J Hazard Mater 192:1122–1131

    Article  CAS  Google Scholar 

  • Machado FM, Bergmann CP, Lima EC, Royer B, de Souza FE, Jauris IM, Calvete T, Fagan SB (2012) Adsorption of Reactive Blue 4 dye from water solutions by carbon nanotubes: experiment and theory. Phys Chem Chem Phys 14:11139–11153

    Article  CAS  Google Scholar 

  • Mall ID, Srivastava VC, Agarwal NK, Mishra IM (2005) Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids Surf, A 264(1):17–28

    Article  CAS  Google Scholar 

  • Mohanty K, Das D, Biswas MN (2008) Treatment of phenolic wastewater in a novel multi-stage external loop airlift reactor using activated carbon. Sep Purif Technol 58(3):311–319

    Article  CAS  Google Scholar 

  • Moradi O, Gupta VK, Agarwal S, Tyagi I, Asif M, Makhlouf ASH, Sadegh H, Shahryari-ghoshekandi R (2015) Characteristics and electrical conductivity of graphene and graphene oxide for adsorption of cationic dyes from liquids: kinetic and thermodynamic study. J Ind Eng Chem 28:294–301

    Article  CAS  Google Scholar 

  • Murty MN, Kumar S (2011) Water pollution in India an economic appraisal. India infrastructure report, water: policy and performance for sustainable development. Infrastructure Development Finance Company. Oxford University Press

    Google Scholar 

  • Namasivayam C, Kavitha D (2002) Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm 54(1):47–58

    Article  CAS  Google Scholar 

  • Naushad M, Khan MR, ALOthman ZA et al (2015a) Removal of BrO3 from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry. Environ Sci Pollut Res 22:15853–15865. https://doi.org/10.1007/s11356-015-4786-y

    Article  CAS  Google Scholar 

  • Naushad M, ALOthman ZA, Alam MM et al (2015b) Synthesis of sodium dodecyl sulfate-supported nanocomposite cation exchanger: Removal and recovery of Cu2+ from synthetic, pharmaceutical and alloy samples. J Iran Chem Soc 12:1677–1686. https://doi.org/10.1007/s13738-015-0642-8

    Article  CAS  Google Scholar 

  • Naushad M, Mittal A, Rathore M, Gupta V (2015c) Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger. Desalin Water Treat 54:2883–2890. https://doi.org/10.1080/19443994.2014.904823

    Article  CAS  Google Scholar 

  • Niculescu VC, Miricioiu MG, Ionete R, Zgavarogea R (2015) An overview of mesoporous adsorbents for food industry wastewater treatment. In: 15th International Multidisciplinary Scientific Geo Conference SGEM 2015. www.sgem.org. SGEM2015 Conference Proceedings, vol 1, pp 25–32

  • Nuengmatcha P, Mahachai R, Chanthai S (2014) Thermodynamic and kinetic study of the intrinsic adsorption capacity of graphene oxide for malachite green removal from aqueous solution. Orien J Chem 30(4):1463–1474

    Article  CAS  Google Scholar 

  • Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  • Pathania D, Katwal R, Sharma G et al (2016) Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int J Biol Macromol 87:366–374. https://doi.org/10.1016/j.ijbiomac.2016.02.073

    Article  CAS  Google Scholar 

  • Pei SF, Cheng HM (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228

    Article  CAS  Google Scholar 

  • Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514

    Article  CAS  Google Scholar 

  • Pourjavadi A, Nazari M, Hosseini SH (2015) Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution. RSC Adv 5(41):32263–32271

    Article  CAS  Google Scholar 

  • Prola LDT, Acayanka E, Lima EC, Umpierres CS, Vaghetti JCP, Santos WO, Laminsi S, Njifon PT (2013) Comparison of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of Reactive Red 120 textile dye from aqueous solution. Ind Crop Prod 46:328–340

    Article  CAS  Google Scholar 

  • Puchana-Rosero MJ, Adebayo MA, Lima EC, Machado FM, Thue PS, Vaghetti JCP, Umpierres CS, Gutterres M (2016) Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Colloids Surf A: Physicochem Eng Aspects 504:105–115

    Article  CAS  Google Scholar 

  • Qin J, Qiu F, Rong X, Yan J, Zhao H, Yang D (2015) Adsorption behavior of crystal violet from aqueous solutions with chitosan–graphite oxide modified polyurethane as an adsorbent. J Appl Poly Sci 132(17)

    Article  CAS  Google Scholar 

  • Radich JG, McGinn PJ, Kamat PV (2011) Graphene-based composites for electrochemical energy storage. Electrochem Soci Inter 20(1):63–66

    Article  CAS  Google Scholar 

  • Rajaram T, Das A (2008) Water pollution by industrial effluent in India: Discharge scenarios and case for participatory ecosystem specific local regulation. Futures 40:56–69

    Article  Google Scholar 

  • Rajeswari A, Vismaiya S, Pius A (2017) Preparation, characterization of nano ZnO-blended cellulose acetate-polyurethane membrane for photocatalytic degradation of dyes from water. Chem Eng J 313:928–937

    Article  CAS  Google Scholar 

  • Ramesha GK, Kumara AV, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361(1):270–277

    Article  CAS  Google Scholar 

  • Ramphal (2013) An empirical study about water pollution in India. Int J Manag Soc Sci 1:52–58

    Google Scholar 

  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777

    Article  CAS  Google Scholar 

  • Rashed MN (2011) Acid dye removal from industrial wastewater by adsorption on treated sewage sludge. Int J Environ Waste Manag 7:175–191

    Article  CAS  Google Scholar 

  • Ren L, Qi X, Liu Y, Huang Z, Wei X, Li J, Yang L, Zhong J (2012) Upconversion-P25 graphene composite as an advanced sunlight driven photo catalytic hybrid material. J Mater Chem 22(23):11765–11771

    Article  CAS  Google Scholar 

  • Ribas MC, Adebayo MA, Prola LDT, Lima EC, Cataluna R, Feris LA, Machado FM, Pavan FA, Calvete T (2014) Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions. Chem Eng J 248:315–326

    Article  CAS  Google Scholar 

  • Robati D, Mirza B, Rajabi M, Moradi O, Tyagi I, Agarwal S, Gupta VK (2016) Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem Eng J 284:687–697

    Article  CAS  Google Scholar 

  • Rocha OP, Cesila CA, Christovam EM, Barros SBDM, Zanoni MVB, de Oliveira DP (2017) Ecotoxicological risk assessment of the “Acid Black 210” dye. Toxicology 376:113–119

    Article  CAS  Google Scholar 

  • Sahraei R, Pour ZS, Ghaemy M (2017) Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: Removal of heavy metals and dyes from water. J Clean Prod 142:2973–2984

    Article  CAS  Google Scholar 

  • Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press London

    Google Scholar 

  • Sakuramoto S, Sasako M, Yamaguchi T, Kinoshita T, Fujii M, Nashimoto A, Furukawa H, Nakajima T, Ohashi Y, Imamura H, Higashino M (2007) Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. New Engl J Med 357(18):1810–1820

    Article  CAS  Google Scholar 

  • Sarkar C, Bora C, Dolui SK (2014) Selective dye adsorption by ph modulation on amine-functionalized reduced graphene oxide–carbon nanotube hybrid. Ind Eng Chem Res 53(42):16148–16155

    Article  CAS  Google Scholar 

  • Sengupta B (2004) Identification of hazardous waste streams, their characterization and waste reduction options in Dyes and dye intermediate sector. Central Pollution Control Board, Ministry of Environment and Forest, New Delhi

    Google Scholar 

  • Shahryari-ghoshekandi R, Sadegh H (2014) Kinetic study of the adsorption of synthetic dyes on graphene surfaces. Jordan J Chem 9(4):267–278

    CAS  Google Scholar 

  • Shamik C, Rajasekhar B (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. J Adv Colloid Interface Sci 204:35–56

    Article  CAS  Google Scholar 

  • Shaobin W, Sun H, Ang HM, Tade MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem Eng J 226:336–347

    Article  CAS  Google Scholar 

  • Sharif F, Gagnon LR, Mulmi S, Roberts EP (2017) Electrochemical regeneration of a reduced graphene oxide/magnetite composite adsorbent loaded with methylene blue. Water Res 114:237–245

    Article  CAS  Google Scholar 

  • Sharma P, Das M (2013) Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: investigation of adsorption parameters. J Chem Eng Data 58:151–158

    Article  CAS  Google Scholar 

  • Sharma P, Saikia BK, Das MR (2014) Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: kinetics, isotherm and thermodynamic parameters. Colloids Surf, A 457:125–133

    Article  CAS  Google Scholar 

  • Shirmardi M, Mahvi AH, Hashemzadeh B, Naeimabadi A, Hassani G, Niri MV (2013) The adsorption of malachite green (MG) as a cationic dye onto functionalized multi walled carbon nanotubes. Korean J Chem Eng 30:1603–1608

    Article  CAS  Google Scholar 

  • Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  • Sui Z, Zhang X, Lei Y, Luo Y (2011) Easy and green synthesis of reduced graphite oxide-based hydrogels. Carbon 49:4314–4321

    Article  CAS  Google Scholar 

  • Sun L, Fugetsu B (2014) Graphene oxide captured for green use: influence on the structures of calcium alginate and macroporous alginic beads and their application to aqueous removal of acridine orange. Chem Eng J 240:565–573

    Article  CAS  Google Scholar 

  • Sun H, Cao L, Lu L (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4(6):550–562

    Article  CAS  Google Scholar 

  • Sun L, Yu H, Fugetsu B (2012) Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution. J Hazard Mater 203:101–110

    Article  CAS  Google Scholar 

  • Sun JZ, Liao ZH, Si RW, Kingori GP, Chang FX, Gao L, Shen Y, Xiao X, Wu XY, Yong YC (2014) Adsorption and removal of triphenylmethane dyes from water by magnetic reduced graphene oxide. Water Sci Technol 70(10):1663–1669

    Article  CAS  Google Scholar 

  • Swaminathan K, Sandhya S, Carmalin Sophia A, Pachhade K, Subrahmanyam YV (2003) Decolorization and degradation of H-acid and other dyes using ferrous–hydrogen peroxide system. Chemosphere 50:619–625

    Article  CAS  Google Scholar 

  • Travlou NA, Kyzas GZ, Lazaridis NK, Deliyanni EA (2013a) Graphite oxide/chitosan composite for reactive dye removal. Chem Eng J 217:256–265

    Article  CAS  Google Scholar 

  • Travlou NA, Kyzas GZ, Lazaridis NK, Deliyanni EA (2013b) Functionalization of graphite oxide with magnetic chitosan for the preparation of a nanocomposite dye adsorbent. Langmuir 29(5):1657–1668

    Article  CAS  Google Scholar 

  • Tsai WT, Hsu HC, Su TY, Lin KY, Lin CM (2008) Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste. J Hazard Mater 154:73–78

    Article  CAS  Google Scholar 

  • Waghmare SS, Arfin T (2015) Fluoride removal from water by various techniques: review. Int J Innov Sci Eng Technol 2(9):560–571

    Google Scholar 

  • Wang S, Wei J, Lv S, Guo Z, Jiang F (2013) Removal of organic dyes in environmental water onto magnetic-sulfonic graphene nanocomposite. CLEAN–Soil Air Water 41(10):992–1001

    CAS  Google Scholar 

  • Wang J, Ji S, Ma R, Wu Q, Wang C, Qiang J, Wang Z (2014) Synthesis of magnetic Fe3O4 modified graphene nanocomposite and its application on the adsorption of some dyes from aqueous solution. Sep Sci Technol 49(6):861–867

    Article  CAS  Google Scholar 

  • Wang D, Liu L, Jiang X, Yu J, Chen X (2015a) Adsorption and removal of malachite green from aqueous solution using magnetic β-cyclodextrin-graphene oxide nanocomposites as adsorbents. Colloids Surf, A 466:166–173

    Article  CAS  Google Scholar 

  • Wang J, Zhu H, Hurren C, Zhao J, Pakdel E, Li Z, Wang X (2015b) Degradation of organic dyes by P25-reduced graphene oxide: Influence of inorganic salts and surfactants. J Environ Chem Eng 648:1–7

    Google Scholar 

  • Wang H, Chen Y, Wei Y (2016) A novel magnetic calcium silicate/graphene oxide composite material for selective adsorption of acridine orange from aqueous solutions. RSC Adv 6(41):34770–34781

    Article  CAS  Google Scholar 

  • Wang L, Mao C, Sui N, Liu M, Yu WW (2017) Graphene oxide/ferroferric oxide/polyethylenimine nanocomposites for Congo red adsorption from water. Environ Technol 38(8):996–1004

    Article  CAS  Google Scholar 

  • Wolf EL (2004) Nanophysics and nanotechnology—an introduction to modern concepts in nanoscience. Wiley, New York

    Google Scholar 

  • Wu T, Liu G, Zhao J, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J Phys Chem B 102(30):5845–5851

    Article  CAS  Google Scholar 

  • Wu S, He Q, Tan C, Wang Y, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160–1172

    Article  CAS  Google Scholar 

  • Wu Z, Zhong H, Yuan X, Wang H, Wang L, Chen X, Zeng G, Wu Y (2014) Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res 67:330–344

    Article  CAS  Google Scholar 

  • Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796

    Article  CAS  Google Scholar 

  • Xiao J, Lv W, Xie Z, Tan Y, Song Y, Zheng Q (2016) Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–π interactions. J Mater Chem A 4(31):12126–12135

    Article  CAS  Google Scholar 

  • Xie G, Xi P, Liu H, Chen F, Huang L, Shi Y, Hou F, Zeng Z, Shao C, Wang J (2012) A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution. J Mater Chem 22(3):1033–1039

    Article  CAS  Google Scholar 

  • Xu YX, Zhao L, Bai H, Hong WJ, Li C, Shi GQ (2009) Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin and its application for optical detection of cadmium(II) ions. J Am Chem Soc 131:13490–13497

    Article  CAS  Google Scholar 

  • Yang ST, Chen S, Chang Y, Cao A, Liu Y, Wang H (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359(1):24–29

    Article  CAS  Google Scholar 

  • Yao Y, Miao S, Liu S, Ma LP, Sun H, Wang S (2012) Synthesis, characterization, and adsorption properties of magnetic Fe3O4@ graphene nanocomposite. Chem Eng J 184:326–332

    Article  CAS  Google Scholar 

  • Yu Y, Murthy BN, Shapter JG, Constantopoulos KT, Voelcker NH, Ellis AV (2013) 0 Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal. J Hazard Mater 260:330–338

    Article  CAS  Google Scholar 

  • Zamani S, Tabrizi NS (2015) Removal of methylene blue from water by graphene oxide aerogel: thermodynamic, kinetic, and equilibrium modeling. Res Chem Intermed 41(10):7945–7963

    Article  CAS  Google Scholar 

  • Zhang L, Li X, Huang Y, Ma Y, Wan X, Chen Y (2010) Controlled synthesis of few layered graphene sheets on a large scale using chemical exfoliation. Carbon 48:2367–2371

    Article  CAS  Google Scholar 

  • Zhang X, Yu H, Yang H, Wan Y, Hu H, Zhai Z, Qin J (2015) Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution. J Colloid Interface Sci 437:277–282

    Article  CAS  Google Scholar 

  • Zhuang Y, Yu F, Chen J, Ma J (2016) Batch and column adsorption of methylene blue by graphene/alginate nanocomposite: comparison of single-network and double-network hydrogels. J Environ Chem Eng 4(1):147–156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Clean Water—ESC0306; Project no 2B 3.3.5, and National Council for Scientific and Technological Development (CNPq, Brazil) for funding. The authors also thank the Director, CSIR-NEERI for his support.

Conflict of Interest

The authors report no declarations of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Carmalin Sophia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carmalin Sophia, A., Arfin, T., Lima, E.C. (2019). Recent Developments in Adsorption of Dyes Using Graphene Based Nanomaterials. In: Naushad, M. (eds) A New Generation Material Graphene: Applications in Water Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-75484-0_18

Download citation

Publish with us

Policies and ethics