Abrahamson M, Alvarez-Fernandez M, Nathanson CM. Cystatins. Biochem Soc Symp. 2003;70:179–99.
CrossRef
CAS
Google Scholar
Aguda AH, Panwar P, Du X, Nguyen NT, Brayer GD, Brömme D. Structural basis of collagen fiber degradation by cathepsin K. Proc Natl Acad Sci U S A. 2014;111(49):17474–9.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Aits S, Jäättelä M. Lysosomal cell death at a glance. J Cell Sci. 2013;126(Pt 9):1905–12.
PubMed
CrossRef
CAS
Google Scholar
Akkari L, Gocheva V, Quick ML, Kester JC, Spencer AK, Garfall AL, Bowman RL, Joyce JA. Combined deletion of cathepsin protease family members reveals compensatory mechanisms in cancer. Genes Dev. 2016;30(2):220–32.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Alvarez-Fernandez M, Barrett AJ, Gerhartz B, Dando PM, Ni J, Abrahamson M. Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem. 1999;274(27):19195–203.
PubMed
CrossRef
CAS
Google Scholar
Andrews NW. Regulated secretion of conventional lysosomes. Trends Cell Biol. 2000;10(8):316–21.
PubMed
CrossRef
CAS
Google Scholar
Arampatzidou M, Rehders M, Dauth S, Yu DMT, Tedelind S, Brix K. Imaging of protease functions—current guide to spotting cysteine cathepsins in classical and novel scenes of action in mammalian epithelial cells and tissues. Ital J Anat Embryol. 2011;116(1):1–19.
PubMed
Google Scholar
Arkona C, Wiederanders B. Expression, subcellular distribution and plasma membrane binding of cathepsin B and gelatinases in bone metastatic tissue. Biol Chem. 1996;377(11):695–702.
PubMed
CAS
Google Scholar
Baici A, Müntener K, Willimann A, Zwicky R. Regulation of human cathepsin B by alternative mRNA splicing: homeostasis, fatal errors and cell death. Biol Chem. 2006;387(8):1017–21.
PubMed
CrossRef
CAS
Google Scholar
Baici A, Novinec M, Lenarčič B. Kinetics of the interaction of peptidases with substrates and modifiers. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 37–84.
CrossRef
Google Scholar
Barrett AJ. The cystatins: a diverse superfamily of cysteine peptidase inhibitors. Biomed Biochim Acta. 1986;45(11–12):1363–74.
PubMed
CAS
Google Scholar
Barrett AJ. Bioinformatics of proteases in the MEROPS database. Curr Opin Drug Discov Dev. 2004;7(3):334–41.
CAS
Google Scholar
Baruch A, Jeffery DA, Bogyo M. Enzyme activity—it’s all about image. Trends Cell Biol. 2004;14(1):29–35.
PubMed
CrossRef
CAS
Google Scholar
Bauer S. Toll-like receptor 9 processing: the key event in Toll-like receptor 9 activation? Immunol Lett. 2013;149(1–2):85–7.
PubMed
CrossRef
CAS
Google Scholar
Becker BF, Jacob M, Leipert S, Salmon AH, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol. 2015;80(3):389–402.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Blais DR, Nasheri N, McKay CS, Legault MC, Pezacki JP. Activity-based protein profiling of host-virus interactions. Trends Biotechnol. 2012;30(2):89–99.
PubMed
CrossRef
CAS
Google Scholar
Blum G. Use of fluorescent imaging to investigate pathological protease activity. Curr Opin Drug Discov Dev. 2008;11(5):708–16.
CAS
Google Scholar
Blum G, Mullins SR, Keren K, Fonovic M, Jedeszko C, Rice MJ, Sloane BF, Bogyo M. Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol. 2005;1(4):203–9.
PubMed
CrossRef
CAS
Google Scholar
Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. Nat Chem Biol. 2007;3(10):668–77.
PubMed
CrossRef
CAS
Google Scholar
Brix K, Jordans S. Watching proteases in action. Nat Chem Biol. 2005;1(4):186–7.
PubMed
CrossRef
CAS
Google Scholar
Brix K, Lemansky P, Herzog V. Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology. 1996;137(5):1963–74.
PubMed
CrossRef
CAS
Google Scholar
Brix K, Dunkhorst A, Mayer K, Jordans S. Cysteine cathepsins: cellular roadmap to different functions. Biochimie. 2008;90(2):194–207.
PubMed
CrossRef
CAS
Google Scholar
Brix K, Scott CJ, Heck MMS. Compartmentalisation of proteolysis. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 85–125.
CrossRef
Google Scholar
Brix K, McInnes J, Al-Hashimi A, Rehders M, Tamhane T, Haugen MH. Proteolysis mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges. Protoplasma. 2015;252(3):755–74.
PubMed
CrossRef
CAS
Google Scholar
Bromme D. Cathepsin F. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004a. p. 1087–8.
Google Scholar
Bromme D. Cathepsin K. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004b. p. 1092–7.
Google Scholar
Brömme D, Li Z, Barnes M, Mehler E. Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry. 1999;38(8):2377–85.
PubMed
CrossRef
Google Scholar
Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: commonalities and differences. Expert Opin Drug Discovery. 2016;11(5):457–72.
CrossRef
CAS
Google Scholar
Brzin J, Kopitar M, Turk V, Machleidt W. Protein inhibitors of cysteine proteinases. I. Isolation and characterization of stefin, a cytosolic protein inhibitor of cysteine proteinases from human polymorphonuclear granulocytes. Hoppe Seylers Z Physiol Chem. 1983;364(11):1475–80.
PubMed
CrossRef
CAS
Google Scholar
Büth H, Wolters B, Hartwig B, Meier-Bornheim R, Veith H, Hansen M, Sommerhoff CP, Schaschke N, Machleidt W, Fusenig NE, Boukamp P, Brix K. HaCaT keratinocytes secrete lysosomal cysteine proteinases during migration. Eur J Cell Biol. 2004;83(11–12):781–95.
PubMed
CrossRef
Google Scholar
Cavallo-Medved D, Sloane BF. Cell-surface cathepsin B: understanding its functional significance. Curr Top Dev Biol. 2003;54:313–41.
PubMed
CrossRef
CAS
Google Scholar
Chen B, Platt MO. Multiplex zymography captures stage-specific activity profiles of cathepsins K, L, and S in human breast, lung, and cervical cancer. J Transl Med. 2011;9:109.
PubMed
PubMed Central
CrossRef
Google Scholar
Chen JM, Dando PM, Rawlings ND, Brown MA, Young NE, Stevens RA, Hewitt E, Watts C, Barrett AJ. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J Biol Chem. 1997;272:8090–8.
PubMed
CrossRef
CAS
Google Scholar
Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–72.
PubMed
CrossRef
CAS
Google Scholar
Collette J, Bocock JP, Ahn K, Chapman RL, Godbold G, Yeyeodu S, Erickson AH. Biosynthesis and alternate targeting of the lysosomal cysteine protease cathepsin L. Int Rev Cytol. 2004;241:1–51.
PubMed
CrossRef
Google Scholar
Conner GE. Cathepsin D. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 43–52.
CrossRef
Google Scholar
Cooper JB. Aspartic proteinases in disease: a structural perspective. Curr Drug Targets. 2002;3(2):155–73.
PubMed
CrossRef
CAS
Google Scholar
Cury VF, Gomez RS, Costa JE, Friedman E, Boson W, De Marco L. A homozygous cathepsin C mutation associated with Haim-Munk syndrome. Br J Dermatol. 2005;152:353–6.
PubMed
CrossRef
CAS
Google Scholar
Dall E, Brandstetter H. Structure and function of legumain in health and disease. Biochimie. 2016;122:126–50.
PubMed
CrossRef
CAS
Google Scholar
Dalton JP, Brindley PJ. Cathepsin W. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. 2004. p. 1109–12.
Google Scholar
Danthi P, Guglielmi KM, Kirchner E, Mainou B, Stehle T, Dermody TS. From touchdown to transcription: the reovirus cell entry pathway. Curr Top Microbiol Immunol. 2010;343:91–119.
PubMed
PubMed Central
CAS
Google Scholar
Davidson Y, Gibbons L, Pritchard A, Hardicre J, Wren J, Tian J, Shi J, Stopford C, Julien C, Thompson J, Payton A, Thaker U, Hayes AJ, Iwatsubo T, Pickering-Brown SM, Pendleton N, Horan MA, Burns A, Purandare N, Lendon CL, Neary D, Snowden JS, Mann DM. Genetic associations between cathepsin D exon 2 C-->T polymorphism and Alzheimer’s disease, and pathological correlations with genotype. J Neurol Neurosurg Psychiatry. 2006;77(4):515–7.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–92.
PubMed
CrossRef
Google Scholar
Dean RT. Lysosomes and protein degradation. Ciba Found Symp. 1979;75:139–49.
Google Scholar
Diederich S, Moll M, Klenk HD, Maisner A. The Nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem. 2005;280(33):29899–903.
PubMed
CrossRef
CAS
Google Scholar
Diederich S, Sauerhering L, Weis M, Altmeppen H, Schaschke N, Reinheckel T, Erbar S, Maisner A. Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol. 2012;86(7):3736–45.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Dolnik O, Stevermann L, Kolesnikova L, Becker S. Marburg virus inclusions: a virus-induced microcompartment and interface to multivesicular bodies and the late endosomal compartment. Eur J Cell Biol. 2015;94(7–9):323–31.
PubMed
CrossRef
CAS
Google Scholar
Driessen C, Bryant RA, Lennon-Dumenil AM, Villadangos JA, Bryant PW, Shi GP, Chapman HA, Ploegh HL. Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J Cell Biol. 1999;147:775–90.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Edgington LE, Verdoes M, Bogyo M. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol. 2011;15(6):798–805.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Erickson AH, Isidoro C, Mach L, Mort JS. Cathepsins: getting in shape for lysosomal proteolysis. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 127–73.
CrossRef
Google Scholar
Flütsch A, Grütter MG. Proteases in death pathways. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 265–318.
CrossRef
Google Scholar
Fonović M, Turk B. Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta. 2014;1840(8):2560–70.
PubMed
CrossRef
CAS
Google Scholar
Friedrichs B, Tepel C, Reinheckel T, Deussing J, von Figura K, Herzog V, Peters C, Saftig P, Brix K. Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest. 2003;111(11):1733–45.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Fritz H. Proteinase inhibitors in severe inflammatory processes (septic shock and experimental endotoxaemia): biochemical, pathophysiological and therapeutic aspects. Ciba Found Symp. 1979;75:351–79.
Google Scholar
Frizler M, Yampolsky IV, Baranov MS, Stirnberg M, Gütschow M. Chemical introduction of the green fluorescence: imaging of cysteine cathepsins by an irreversibly locked GFP fluorophore. Org Biomol Chem. 2013;11(35):5913–21.
PubMed
CrossRef
CAS
Google Scholar
Gansz M, Kern U, Peters C, Reinheckel T. Exploring systemic functions of lysosomal cysteine proteases: the perspective of genetically modified mouse models. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 217–33.
CrossRef
Google Scholar
Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.
PubMed
CrossRef
CAS
Google Scholar
Gocheva V, Joyce JA. Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle. 2007;6(1):60–4.
PubMed
CrossRef
CAS
Google Scholar
Goulet B, Nepveu A. Complete and limited proteolysis in cell cycle progression. Cell Cycle. 2004;3(8):986–9.
PubMed
CrossRef
CAS
Google Scholar
Grabowska MM, Day ML. Soluble E-cadherin: more than a symptom of disease. Front Biosci (Landmark Ed). 2012;17:1948–64.
CrossRef
CAS
Google Scholar
Greenbaum D, Baruch A, Hayrapetian L, Darula Z, Burlingame A, Medzihradszky KF, Bogyo M. Chemical approaches for functionally probing the proteome. Mol Cell Proteomics. 2002;1(1):60–8.
PubMed
CrossRef
CAS
Google Scholar
Grzywa R, Sieńczyk M. Phosphonic esters and their application of protease control. Curr Pharm Des. 2013;19(6):1154–78.
PubMed
CrossRef
CAS
Google Scholar
Hart TC, Hart PS, Bowden DW, Michalec MD, Callison SA, Walker SJ, Zhang Y, Firatli E. Mutations of the cathepsin C gene are responsible for Papillon-Lefevre syndrome. J Med Genet. 1999;36:881–7.
PubMed
PubMed Central
CAS
Google Scholar
Hart PS, Zhang Y, Firatli E, Uygur C, Lotfazar M, Michalec MD, Marks JJ, Lu X, Coates BJ, Seow WK, MarshaIl R, Williams D, Reed JB, Wright JT, Hart TC. Identification of cathepsin C mutations in ethnically diverse Papillon-Lefevre syndrome patients. J Med Genet. 2000;37:927–32.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Virus. 2012;4(4):557–80.
CrossRef
CAS
Google Scholar
Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest. 2001;108(6):779–84.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Hou WS, Bromme D, Zhao Y, Mehler E, Dushey C, Weinstein H, Miranda CS, Fraga C, Greig F, Carey J, Rimoin DL, Desnick RJ, Gelb BD. Characterization of novel cathepsin K mutations in the pro and mature polypeptide regions causing pycnodysostosis. J Clin Invest. 1999;103:731–8.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Hunt CL, Lennemann NJ, Maury W. Filovirus entry: a novelty in the viral fusion world. Virus. 2012;4(2):258–75.
CrossRef
CAS
Google Scholar
Huntington JA. Shape-shifting serpins--advantages of a mobile mechanism. Trends Biochem Sci. 2006;31(8):427–35.
PubMed
CrossRef
CAS
Google Scholar
Hurley JH. ESCRTs are everywhere. EMBO J. 2015;34(19):2398–23407.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Jessani N, Humphrey M, McDonald WH, Niessen S, Masuda K, Gangadharan B, Yates JR 3rd, Mueller BM, Cravatt BF. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. Proc Natl Acad Sci U S A. 2004;101(38):13756–61.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Johnson MR, Polymeropoulos MH, Vos HL, Ortiz de Luna RI, Francomano CA. A nonsense mutation in the cathepsin K gene observed in a family with pycnodysostosis. Genome Res. 1996;6:1050–5.
PubMed
CrossRef
CAS
Google Scholar
Jordans S, Jenko-Kokalj S, Kuhl NM, Tedelind S, Sendt W, Bromme D, Turk D, Brix K. Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem. 2009;10:23.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Joyce JA, Hanahan D. Multiple roles for cysteine cathepsins in cancer. Cell Cycle. 2004;3(12):1516–619.
PubMed
CrossRef
CAS
Google Scholar
Kay J, Tatnell PJ. Cathepsin E. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 33–8.
CrossRef
Google Scholar
Kirschke H. Cathepsin H. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004a. p. 1089–92.
Google Scholar
Kirschke H. Cathepsin L. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004b. p. 1097–102.
Google Scholar
Kirschke H. Cathepsin S. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004c. p. 1104–7.
Google Scholar
Kornfeld S. Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem. 1992;61:307–30.
PubMed
CrossRef
CAS
Google Scholar
Kornfeld S, Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525.
PubMed
CrossRef
CAS
Google Scholar
Krueger S, Kalinski T, Hundertmark T, Wex T, Kuster D, Peitz U, Ebert M, Nagler DK, Kellner U, Malfertheiner P, Naumann M, Rocken C, Roessner A. Up-regulation of cathepsin X in Helicobacter pylori gastritis and gastric cancer. J Pathol. 2005;207:32–42.
PubMed
CrossRef
CAS
Google Scholar
Lemansky P, Brix K, Herzog V. Subcellular distribution, secretion, and posttranslational modifications of clusterin in thyrocytes. Exp Cell Res. 1999;251(1):147–55.
PubMed
CrossRef
CAS
Google Scholar
Lenarcic B, Turk V. Thyroglobulin type-1 domains in equistatin inhibit both papain-like cysteine proteinases and cathepsin D. J Biol Chem. 1999;274(2):563–6.
PubMed
CrossRef
CAS
Google Scholar
Lenarcic B, Ritonja A, Strukelj B, Turk B, Turk V. Equistatin, a new inhibitor of cysteine proteinases from Actinia equina, is structurally related to thyroglobulin type-1 domain. J Biol Chem. 1997;272(21):13899–903.
PubMed
CrossRef
CAS
Google Scholar
Li Z, Hou WS, Escalante-Torres CR, Gelb BD, Bromme D. Collagenase activity of cathepsin K depends on complex formation with chondroitin sulfate. J Biol Chem. 2002;277(32):28669–76.
PubMed
CrossRef
CAS
Google Scholar
Li Z, Yasuda Y, Li W, Bogyo M, Katz N, Gordon RE, Fields GB, Brömme D. Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem. 2004;279(7):5470–9.
PubMed
CrossRef
CAS
Google Scholar
Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, Prebois C, Rochefort H, Vignon F. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett. 2006;237(2):167–79.
PubMed
CrossRef
CAS
Google Scholar
Linke M, Herzog V, Brix K. Trafficking of lysosomal cathepsin B-green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J Cell Sci. 2002a;115(Pt 24):4877–89.
PubMed
CrossRef
CAS
Google Scholar
Linke M, Jordans S, Mach L, Herzog V, Brix K. Thyroid stimulating hormone upregulates secretion of cathepsin B from thyroid epithelial cells. Biol Chem. 2002b;383(5):773–84.
PubMed
CrossRef
CAS
Google Scholar
Luke CJ, Pak SC, Askew YS, Naviglia TL, Askew DJ, Nobar SM, Vetica AC, Long OS, Watkins SC, Stolz DB, Barstead RJ, Moulder GL, Brömme D, Silverman GA. An intracellular serpin regulates necrosis by inhibiting the induction and sequelae of lysosomal injury. Cell. 2007;130(6):1108–19.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Machleidt W, Borchart U, Fritz H, Brzin J, Ritonja A, Turk V. Protein inhibitors of cysteine proteinases. II. Primary structure of stefin, a cytosolic protein inhibitor of cysteine proteinases from human polymorphonuclear granulocytes. Hoppe Seylers Z Physiol Chem. 1983;364(11):1481–6.
PubMed
CrossRef
CAS
Google Scholar
Mason RW, Gal S, Gottesman MM. The identification of the major excreted protein (MEP) from a transformed mouse fibroblast cell line as a catalytically active precursor form of cathepsin L. Biochem J. 1987;248(2):449–54.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Mayer K, Iolyeva ME, Meyer-Grahle U, Brix K. Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments. Biol Chem. 2008;389(8):1085–96.
PubMed
CrossRef
CAS
Google Scholar
Mehtani S, Gong Q, Panella J, Subbiah S, Peffley DM, Frankfater A. In vivo expression of an alternatively spliced human tumor message that encodes a truncated form of cathepsin B. Subcellular distribution of the truncated enzyme in COS cells. J Biol Chem. 1998;273(21):13236–44.
PubMed
CrossRef
CAS
Google Scholar
Menard R, Sulea T. Cathepsin X. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1113–6.
Google Scholar
Meulendyke KA, Wurth MA, McCann RO, Dutch RE. Endocytosis plays a critical role in proteolytic processing of the Hendra virus fusion protein. J Virol. 2005;79(20):12643–9.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 2015;202:120–34.
CrossRef
CAS
PubMed
Google Scholar
Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.
PubMed
CrossRef
CAS
Google Scholar
Mort JS. Cathepsin B. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1079–86.
Google Scholar
Mort JS, Buttle DJ. Cathepsin B. Int J Biochem Cell Biol. 1997;29(5):715–20.
PubMed
CrossRef
CAS
Google Scholar
Moyle G, Gazzard B. Current knowledge and future prospects for the use of HIV protease inhibitors. Drugs. 1996;51(5):701–12.
PubMed
CrossRef
CAS
Google Scholar
Müntener K, Zwicky R, Csucs G, Rohrer J, Baici A. Exon skipping of cathepsin B: mitochondrial targeting of a lysosomal peptidase provokes cell death. J Biol Chem. 2004;279(39):41012–7.
PubMed
CrossRef
CAS
Google Scholar
Naganawa Y, Itoh K, Shimmoto M, Kamei S, Takiguchi K, Doi H, Sakuraba H. Stable expression of protective protein/cathepsin A-green fluorescent protein fusion genes in a fibroblastic cell line from a galactosialidosis patient. Model system for revealing the intracellular transport of normal and mutated lysosomal enzymes. Biochem J. 1999;340(Pt 2):467–74.
PubMed
PubMed Central
CAS
Google Scholar
Nielsen R, Courtoy PJ, Jacobsen C, Dom G, Lima WR, Jadot M, Willnow TE, Devuyst O, Christensen EI. Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells. Proc Natl Acad Sci U S A. 2007;104(13):5407–12.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Novinec M, Lenarčič B, Baici A. Clusterin is a specific stabilizer and liberator of extracellular cathepsin K. FEBS Lett. 2012;586(7):1062–6.
PubMed
CrossRef
CAS
Google Scholar
Obermajer N, Magister S, Kopitar AN, Tepes B, Ihan A, Kos J. Cathepsin X prevents an effective immune response against Helicobacter pylori infection. Eur J Cell Biol. 2009;88:461–71.
PubMed
CrossRef
CAS
Google Scholar
Ong PC, McGowan S, Pearce MC, Irving JA, Kan WT, Grigoryev SA, Turk B, Silverman GA, Brix K, Bottomley SP, Whisstock JC, Pike RN. DNA accelerates the inhibition of human cathepsin V by serpins. J Biol Chem. 2007;282(51):36980–6.
PubMed
CrossRef
CAS
Google Scholar
Pager CT, Dutch RE. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J Virol. 2005;79(20):12714–20.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Pager CT, Craft WWJ, Patch J, Dutch RE. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology. 2006;346(2):251–7.
PubMed
CrossRef
CAS
Google Scholar
Peloille S, Esnard A, Dacheux JL, Guillou F, Gauthier F, Esnard F. Interactions between ovine cathepsin L, cystatin C and alpha 2-macroglobulin. Potential role in the genital tract. Eur J Biochem. 1997;244(1):140–6.
PubMed
CrossRef
CAS
Google Scholar
Platt MO, Evans D, Keegan PM, McNamara L, Parker IK, Roberts LM, Caulk AW, Gleason RLJ, Seifu D, Amogne W, Penny C. Low-cost method to monitor patient adherence to HIV antiretroviral therapy using multiplex Cathepsin zymography. Mol Biotechnol. 2016;58(1):56–64.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Pohlmann R, Boeker MW, von Figura K. The two mannose 6-phosphate receptors transport distinct complements of lysosomal proteins. J Biol Chem. 1995;270(45):27311–8.
PubMed
CrossRef
CAS
Google Scholar
Poller W, Willnow TE, Hilpert J, Herz J. Differential recognition of alpha 1-antitrypsin-elastase and alpha 1-antichymotrypsin-cathepsin G complexes by the low density lipoprotein receptor-related protein. J Biol Chem. 1995;270(6):2841–5.
PubMed
CrossRef
CAS
Google Scholar
Pshezhetsky AV. Lysosomal carboxypeptidase A. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1923–9.
Google Scholar
Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Rawlings ND. Protease families, evolution and mechanism of action. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. 1–36.
Google Scholar
Rawlings ND, Barrett AJ, Finn R. Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 2016;44(D1):D343–50.
PubMed
CrossRef
CAS
Google Scholar
Rawn SM, Cross JC. The evolution, regulation, and function of placenta-specific genes. Annu Rev Cell Dev Biol. 2008;24:159–81.
PubMed
CrossRef
CAS
Google Scholar
Reiser J, Adair B, Reinheckel T. Specialized roles for cysteine cathepsins in health and disease. J Clin Invest. 2010;120(10):3421–31.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Rivera LE, Colon K, Cantres-Rosario YM, Zenon FM, Melendez LM. Macrophage derived cystatin B/cathepsin B in HIV replication and neuropathogenesis. Curr HIV Res. 2014;12(2):111–20.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Rochefort H, Garcia M, Glondu M, Laurent V, Liaudet E, Rey JM, Roger P. Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview. Clin Chim Acta. 2000;291(2):157–70.
PubMed
CrossRef
CAS
Google Scholar
Rock KL, Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol Rev. 2005;207:166–83.
PubMed
CrossRef
CAS
Google Scholar
Rubin H. Systemic effects of cancer: role of multiple proteases and their toxic peptide products. Med Sci Monit. 2005;11(7):RA221–8.
PubMed
CAS
Google Scholar
Sadaghiani AM, Verhelst SH, Gocheva V, Hill K, Majerova E, Stinson S, Joyce JA, Bogyo M. Design, synthesis, and evaluation of in vivo potency and selectivity of epoxysuccinyl-based inhibitors of papain-family cysteine proteases. Chem Biol. 2007;14(5):499–511.
PubMed
CrossRef
CAS
Google Scholar
Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A. 1998;95(23):13453–8.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Salpeter SJ, Blum G. Ready, set, cleave: proteases in action. Chem Biol. 2013;20(2):137–8.
PubMed
CrossRef
CAS
Google Scholar
Salvesen GS. Cathepsin G. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1524–6.
Google Scholar
Sanman LE, Bogyo M. Activity-based profiling of proteases. Annu Rev Biochem. 2014;83:249–73.
PubMed
CrossRef
CAS
Google Scholar
Scharf JG, Braulke T. The role of the IGF axis in hepatocarcinogenesis. Horm Metab Res. 2003;35(11–12):685–93.
PubMed
CAS
Google Scholar
Schaschke N, Assfalg-Machleidt I, Machleidt W, Moroder L. Substrate/propeptide-derived endo-epoxysuccinyl peptides as highly potent and selective cathepsin B inhibitors. FEBS Lett. 1998;421(1):80–2.
PubMed
CrossRef
CAS
Google Scholar
Schechter I, Berger A. On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Commun. 1968;32(5):898–902.
PubMed
CrossRef
CAS
Google Scholar
Schilling K, Körner A, Sehmisch S, Kreusch A, Kleint R, Benedix Y, Schlabrakowski A, Wiederanders B. Selectivity of propeptide-enzyme interaction in cathepsin L-like cysteine proteases. Biol Chem. 2009;390(2):167–74.
PubMed
CrossRef
CAS
Google Scholar
Siintola E, Partanen S, Strömme P, Haapanen A, Haltia M, Maehlen J, Lehesjoki AE, Tyynelä J. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006;129(Pt 6):1438–45.
PubMed
CrossRef
Google Scholar
Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O'Donnell E, Salvesen GS, Travis J, Whisstock JC. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem. 2001;276(36):33293–6.
PubMed
CrossRef
CAS
Google Scholar
Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013;100(3):605–14.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Sloane BF, Moin K, Krepela E, Rozhin J. Cathepsin B and its endogenous inhibitors: the role in tumor malignancy. Cancer Metastasis Rev. 1990;9(4):333–52.
PubMed
CrossRef
CAS
Google Scholar
Sloane BF, List K, Fingleton B, Matrisian L. Proteases in cancer—significance for invasion and metastasis. In: Brix K, Stöcker W, editors. Proteases: structure and function. Berlin: Life Sciences, springer.com; 2013. p. TBD.
CrossRef
Google Scholar
Spiess E, Brüning A, Gack S, Ulbricht B, Spring H, Trefz G, Ebert W. Cathepsin B activity in human lung tumor cell lines: ultrastructural localization, pH sensitivity, and inhibitor status at the cellular level. J Histochem Cytochem. 1994;42(7):917–29.
PubMed
CrossRef
CAS
Google Scholar
Sun L, Liu S, Chen ZJ. SnapShot: pathways of antiviral innate immunity. Cell. 2010;140:436. https://doi.org/10.1016/j.cell.2010.01.041.
CrossRef
PubMed
PubMed Central
Google Scholar
Tamhane T, Wolters BK, Illukkumbura R, Maelandsmo GM, Haugen MH, Brix K. Construction of a plasmid coding for green fluorescent protein tagged cathepsin L and data on expression in colorectal carcinoma cells. Data Brief. 2015;5:468–75.
PubMed
PubMed Central
CrossRef
Google Scholar
Tamhane T, Lllukkumbura R, Lu S, Maelandsmo GM, Haugen MH, Brix K. Nuclear cathepsin L activity is required for cell cycle progression of colorectal carcinoma cells. Biochimie. 2016;122:208–18.
PubMed
CrossRef
CAS
Google Scholar
Tedelind S, Poliakova K, Valeta A, Hunegnaw R, Yemanaberhan EL, Heldin NE, Kurebayashi J, Weber E, Kopitar-Jerala N, Turk B, Bogyo M, Brix K. Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem. 2010;391(8):923–35.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Tepel C, Bromme D, Herzog V, Brix K. Cathepsin K in thyroid epithelial cells: sequence, localization and possible function in extracellular proteolysis of thyroglobulin. J Cell Sci. 2000;113(Pt 24):4487–98.
PubMed
CAS
Google Scholar
Tholen M, Hillebrand LE, Tholen S, Sedelmeier O, Arnold SJ, Reinheckel T. Out-of-frame start codons prevent translation of truncated nucleo-cytosolic cathepsin L in vivo. Nat Commun. 2014;5:4931.
PubMed
CrossRef
CAS
Google Scholar
Tolosa E, Li W, Yasuda Y, Wienhold W, Denzin LK, Lautwein A, Driessen C, Schnorrer P, Weber E, Stevanovic S, Kurek R, Melms A, Bromme D. Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J Clin Invest. 2003;112:517–26.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Tong TR. SARS coronavirus anti-infectives. Recent Pat Antiinfect Drug Discov. 2006;1(3):297–308.
PubMed
CrossRef
CAS
Google Scholar
Toomes C, James J, Wood AJ, Wu CL, McCormick D, Lench N, Hewitt C, Moynihan L, Roberts E, Woods CG, Markham A, Wong M, Widmer R, Ghaffar KA, Pemberton M, Hussein IR, Temtamy SA, Davies R, Read AP, Sloan P, Dixon MJ, Thakker NS. Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat Genet. 1999;23:421–4.
PubMed
CrossRef
CAS
Google Scholar
Travis J. Structure, function, and control of neutrophil proteinases. Am J Med. 1988;84(6A):37–42.
PubMed
CrossRef
Google Scholar
Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett. 1991;285(2):213–9.
PubMed
CrossRef
CAS
Google Scholar
Turk B, Turk V. Lysosomes as “suicide bags” in cell death: myth or reality? J Biol Chem. 2009;284(33):21783–7.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Turk B, Turk D, Turk V. Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta. 2000;1477(1–2):98–111.
PubMed
CrossRef
CAS
Google Scholar
Turk B, Turk D, Dolenc I, Turk V. Dipeptidyl-peptidase I. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1192–6.
Google Scholar
Turk V, Stoka V, Turk D. Cystatins: biochemical and structural properties, and medical relevance. Front Biosci. 2008;(13):5406–20.
CrossRef
Google Scholar
Velasco G, Lopez-Otin C. Cathepsin O. In: Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004. p. 1102–3.
Google Scholar
Vogt C, Eickmann M, Diederich S, Moll M, Maisner A. Endocytosis of the Nipah virus glycoproteins. J Virol. 2005;79(6):3865–72.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
von Figura K. Molecular recognition and targeting of lysosomal proteins. Curr Opin Cell Biol. 1991;3(4):642–6.
CrossRef
Google Scholar
Weber E, Barbulescu E, Medek R, Reinheckel T, Sameni M, Anbalagan A, Moin K, Sloane BF. Cathepsin B-deficient mice as source of monoclonal anti-cathepsin B antibodies. Biol Chem. 2015;396(3):277–81.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Weis M, Maisner A. Nipah virus fusion protein: importance of the cytoplasmic tail for endosomal trafficking and bioactivity. Eur J Cell Biol. 2015;94(7–9):316–22.
PubMed
CrossRef
CAS
PubMed Central
Google Scholar
Weiss-Sadan T, Gotsman I, Blum G. Cysteine proteases in atherosclerosis. FEBS J. 2017. https://doi.org/10.1111/febs.14043. (Epub ahead of print).
Whisstock JC, Silverman GA, Bird PI, Bottomley SP, Kaiserman D, Luke CJ, Pak SC, Reichhart JM, Huntington JA. Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. J Biol Chem. 2010;285(32):24307–12.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Willnow TE, Moehring JM, Inocencio NM, Moehring TJ, Herz J. The low-density-lipoprotein receptor-related protein (LRP) is processed by furin in vivo and in vitro. Biochem J. 1996;313(Pt 1):71–6.
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Zeeuwen PL, Cheng T, Schalkwijk J. The biology of cystatin M/E and its cognate target proteases. J Invest Dermatol. 2009;129(6):1327–38.
PubMed
CrossRef
CAS
Google Scholar
Zhou XY, Morreau H, Rottier R, Davis D, Bonten E, Gillemans N, Wenger D, Grosveld FG, Doherty P, Suzuki K, Grosveld GC, D'Azzo A. Mouse model for the lysosomal disorder galactosialidosis and correction of the phenotype with overexpressing erythroid precursor cells. Genes Dev. 1995;9:2623–34.
PubMed
CrossRef
CAS
Google Scholar
Zou F, Schmon M, Sienczyk M, Grzywa R, Palesch D, Boehm BO, Sun ZL, Watts C, Schirmbeck R, Burster T. Application of a novel highly sensitive activity-based probe for detection of cathepsin G. Anal Biochem. 2012;421(2):667–72.
PubMed
CrossRef
CAS
Google Scholar
Zwicky R, Müntener K, Csucs G, Goldring MB, Baici A. Exploring the role of 5′ alternative splicing and of the 3′-untranslated region of cathepsin B mRNA. Biol Chem. 2003;384(7):1007–18.
PubMed
CrossRef
CAS
Google Scholar