Skip to main content

Coastal Erosion and Land Loss: Causes and Impacts

  • Chapter
  • First Online:
Tomorrow's Coasts: Complex and Impermanent

Part of the book series: Coastal Research Library ((COASTALRL,volume 27))

  • 1234 Accesses

Abstract

The margins of the sea are encroaching landward throughout most of the world. This is happening not simply because of sea level rise but also because the solid material- sand, mud, gravel-composing the shore and the subaerial and subaqueous lands immediately adjacent to it is being displaced. In addition to physical erosion by wave, thermal erosion in the Arctic and loss of wetlands through ecological processes are also active. The expected rate of sea level is predicted to exceed critical “tipping points” for wetlands destruction in many regions.

We speak of course of that narrow strip of land over which ocean waves and moon-powered tides are masters-that margin of territory that remains wild despite the proximity of cities….

—W. J. Dakin—Australian Seashores

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes, S.R., and S. Virgets. 2017. Regional Impacts of Coastal Land Loss and Louisiana’s Opportunity for Growth, 39. Baton Rouge: LSU E. J. Ourso College of Business Economics & Policy Research Group.

    Google Scholar 

  • Barras, J.A. 2006. Land area change in coastal Louisiana after the 2005 hurricanes—A series of three maps: U.S. Geological Survey Open-File Report 06–1274, Available online. URL: http://pubs.usgs.gov/of/2006/1274/.

  • Clough, J., A. Polaczyk, and M. Propato. 2016. Modeling the potential effects of sea-level rise on the coast of New York: Integrating mechanistic accretion and stochastic uncertainty. Environmental Modelling and Software 84: 349–362.

    Article  Google Scholar 

  • Coleman, J.M., O.K. Huh, and D. Brud Jr. 2008. Wetland loss in world deltas. Journal of Coastal Research 24 (sp1): 1–14.

    Article  Google Scholar 

  • Costanza, R., F.H. Sklar, and M.L. White. 1990. Modeling coastal landscape dynamics. BioScience 40: 91–107.

    Article  Google Scholar 

  • Costanza, R., R. dArge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. Oneill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    Article  Google Scholar 

  • Cowell, P.J., P.S. Roy, and R.A. Jones. 1995. Simulation of large-scale coastal change using a morphological behaviour model. Marine Geology 126 (1–4): 45–61.

    Article  Google Scholar 

  • Dahl, T.E. 2006. Status and Trends of Wetlands in the Conterminous United States, 1998 to 2004. Fish and Wildlife Service, Washington, DC: US Department of the Interior.

    Google Scholar 

  • Dahl, T.E., and S.M Stedman. 2013. Status and trends of wetlands in the coastal watersheds of the Conterminous United States 2004 to 2009. U.S. Department of the Interior, Fish and Wildlife Service and National Oceanic and Atmospheric Administration, National Marine Fisheries Service.

    Google Scholar 

  • D’Alpaos, A., S. Lanzoni, M. Marani, and A. Rinaldo. 2007. Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research, Part F, Earth Surfaces 112: 17.

    Google Scholar 

  • Dean, R.G. and R.A Dalrymple. 2002. Coastal Processes with Engineering Applications, 475 pp Cambridge: Cambridge University Press.

    Google Scholar 

  • Deaton, C.D., C.J. Hein, and M.L. Kirwan. 2017. Barrier island migration dominates ecogeomorphic feedbacks and drives salt marsh loss along the Virginia Atlantic Coast, USA. Geology 45 (2): 123. https://doi.org/10.1130/G38459.1.

    Article  Google Scholar 

  • Dixon, M.J.R., J. Loh, N.C. Davidson, C. Beltrame, R. Freeman, and M. Walpole. 2016. Tracking global change in ecosystem area: The wetland extent trends index. Biological Conservation 193: 27–35.

    Article  Google Scholar 

  • Dronkers, J., and T. Stojanovic. 2016. Socio-economic impacts—coastal management and governance. North Sea Region Climate Change Assessment. pp. 475–488.

    Chapter  Google Scholar 

  • Engle, V.D. 2011. Estimating the provision of ecosystem services by gulf of Mexico coastal wetlands. Wetlands 31 (1): 179–193. https://doi.org/10.1007/s13157-010-0132-9.

    Article  Google Scholar 

  • Enwright, N.M., K.T. Griffith, and M.J. Osland. 2016. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Frontiers in Ecology and the Environment 14 (6): 307–316. https://doi.org/10.1002/fee.1282.

    Article  Google Scholar 

  • Fagherazzi, S., M.L. Kirwan, S.M. Mudd, G.G. Guntenspergen, S. Temmerman, et al. 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics 50: RG1002.

    Article  Google Scholar 

  • Gibbs, A.E., and B.M. Richmond. 2015. National assessment of shoreline change—Historical shoreline change along the north coast of Alaska, U.S.–Canadian border to Icy Cape. U.S. Geological Survey Open-File Report 2015–1048, 96 p., https://dx.doi.org/10.3133/ofr20151048.

  • Goodell, J. 2017. The Water Will Come: Rising Seas, Sinking Cities and the Remaking of the Civilized World, 340. New York: Little, Brown and Company.

    Google Scholar 

  • Hagen, S.C., J.T. Morris, P. Bacopoulos, and Jf Weishampel. 2013. Sea-level rise impact on a salt marsh system of the lower St. Johns River. J Waterway, Port and Ocean Engineering. 139: 118–125.

    Article  Google Scholar 

  • Hauer, M.E., J.M. Evans, and D.R. Mishra. 2016. Millions projected to be at risk from sea-level rise in the continental United States. Nature Climate Change 6 (7): 691–695.

    Article  Google Scholar 

  • Houser, C., C. Hapke, and S. Hamilton. 2007. Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms. Geomorphology 100 (3–4): 223–240. https://doi.org/10.1016/j.geomorph.2007.12.007.

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC), 2013 Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge.

    Google Scholar 

  • Jones, et al. 2009. Increase in the rate and uniformity of coastline erosion in Arctic Alaska. Geophysical Research Letters 36 (3): L03503. https://doi.org/10.1029/2008GL036205.

    Article  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Reseach Letters 37: L23401.

    Google Scholar 

  • Kirwan, M.L., and A.B. Murray. 2007. A coupled geomorphic and ecological model of tidal marsh evolution. PNAS 104 (15): 6118–6122.

    Article  Google Scholar 

  • Kirwan, M.L., and G.R. Guntenspergen. 2009. Accelerated sea-level rise—A response to Craft al. Frontiers in Ecology and the Environment 7 (3): 126–127.

    Article  Google Scholar 

  • Komar, P.D. 1998. Beach Processes and Sedimentation. Prentice Hall 544 pp.

    Google Scholar 

  • Lorenzo-Trueba, J., and A.D. Ashton. 2014. Rollover, drowning, and discontinuous retreat: Distinct modes of barrier response to sea-level rise arising from a simple morphodynamic model. Geophysical Research Earth Surface 119: 779–801. https://doi.org/10.1002/2013JF002941.

    Article  Google Scholar 

  • Loucks, D.P. 2006. Modeling and managing the interactions between hydrology, ecology, and economics. Journal of Hydrology 328 (3–4): 408–416.

    Article  Google Scholar 

  • Martin, J.F., M.L. White, E. Reyes, G.P. Kemp, H. Mashriqui, and J.W. Day. 2000. Evaluation of coastal management plans with a spatial model: Mississippi Delta, Louisiana, USA. Environmental Management 26: 117–129.

    Article  Google Scholar 

  • Martin, J.F., E. Reyes, G.P. Kemp, H. Mashriqui, and J.W. Day. 2002. Landscape modeling of the Mississippi delta: Using a series of landscape models, we examined the survival and creation of Mississippi Delta marshes and the impact of altered riverine inputs, accelerated sea-level rise, and management proposals on these marshes. BioScience 52 (4): 357–365.

    Article  Google Scholar 

  • McDonnell, T. 2017. Slum Dwellers In Africa’s biggest megacity are now living in Canoes. NPR, 15 May 2017.

    Google Scholar 

  • Morris, J.T., and W.B. Bowden. 1986. A mechanistic, numerical model of sedimentation, mineralization, and decomposition for marsh sediments. Soil Science Society of America Journal 50: 96–105.

    Article  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10): 2869–2877.

    Article  Google Scholar 

  • Morris, J.T., et al. 2016. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth’s Future. https://doi.org/10.1002/2015EF000334.

    Article  Google Scholar 

  • Morton, R.A., N.A. Buster, and M.D. Krohn. 2002. Subsurface controls on historical subsidence rates and associated wetland loss in Southcentral Louisiana. Transactions. Gulf Coast Association of Geological Societies 52: 767–778.

    Google Scholar 

  • Mudd, S.M., S.M. Howell, and J.T. Morris. 2009. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science 82 (3): 377–389.

    Article  Google Scholar 

  • Neubauer, S.C. 2008. Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuarine, Coastal and Shelf Science 78: 78–88.

    Article  Google Scholar 

  • Overeem, I., and J.P.M. Syvitski. 2009. Dynamics and vulnerability of delta systems. LOICZ Reports & Studies No. 35. Geesthacht: GKSS Research Center, 54 pp.

    Google Scholar 

  • Park, R.A., M.S. Trehan, P.W. Mausel, and R.C. Howe. 1989. The effects of sea level rise on US coastal wetlands. In The Potential Effects of Global Climate Change on the United States. Appendix B. Sea level rise. U.S. EPA Office of Policy, Planning, and Evaluation, Washington, D.C., USA.

    Google Scholar 

  • Ratliff, K.M., A.E. Braswell, and M. Marani. 2015. Spatial response of coastal marshes to increased atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America 112: 15580–15584. https://doi.org/10.1073/pnas.1516286112.

    Article  Google Scholar 

  • Reyes, E., M.L. White, J.F. Martin, G.P. Kemp, J.W. Day, and A. Aravamuthan. 2000. Landscape modeling of coastal habitat change in the Mississippi Delta. Ecology 81: 2331–2349.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan, and C. Copeland. 2012. Modelling wetland surface elevation dynamics and its application to forecasting the effect of sea-level rise on estuarine wetlands. Ecological Modelling 244: 148–157.

    Article  Google Scholar 

  • Rosati, J.D., and G.W. Stone. 2009. Geomorphologic evolution of Barrier Islands along the Northern U.S. Gulf of Mexico and implications for engineering design in barrier restoration. Journal of Coastal Research 25 (1): 8–22.

    Article  Google Scholar 

  • Ross, M.S., S. Mitchell-Brucker, J.P. Sah, S. Stothoff, P.L. Ruiz, D.L. Reed, K. Jayachandran, and C.L. Coultas. 2006. Interaction of hydrology and nutrient limitation in ridge and slough landscape of southern Florida. Hydrobiologia 569: 37–59. https://doi.org/10.1007/s10750-006-0121-4.

    Article  Google Scholar 

  • Ross, M.S., J.J. O’Brien, R.G. Ford, K. Zhang, and A. Morkill. 2009. Disturbance and the rising tide: The challenge of biodiversity management for low island ecosystems. Frontiers in Ecology and the Environment 9: 471–478.

    Article  Google Scholar 

  • Schile, L.M., J.C. Callaway, J.T. Morris, D. Stralberg, V.T. Parker, and M. Kelly. 2014. Modeling tidal marsh distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in Marsh Resiliency. PLoS ONE 9 (2): e88760. https://doi.org/10.1371/journal.pone.008876.

    Article  Google Scholar 

  • Shepard, F.P. 1950. Beach Cycles in Southern California. U.S. Army Corps of Engineers, Beach Erosion Board. Technical Memorandum No. 20.

    Google Scholar 

  • Stralberg, D., M. Brennan, J.C. Callaway, J.K. Wood, L.M. Schile, et al. 2011. Evaluating tidal marsh sustainability in the face of sea-level rise: A hybrid modeling approach applied to San Francisco Bay. PLoS ONE 6: e27388.

    Article  Google Scholar 

  • Stutz, M.L., and O.H. Pilkey. 2001. A review of global barrier island distribution: Journal of Coastal Research, Special Issue 34, ICS 2000 Proceedings, 15–22.

    Google Scholar 

  • Turner, R.E., M.S. Kearney, and R.W. Parkinson. 2017. Sea-level rise tipping point of delta survival. Journal of Coastal Research. https://doi.org/10.2112/JCOASTRES-D-17-00068.1. (in press; published online October 2017).

    Article  Google Scholar 

  • Vitousek, S., P.L. Barnard, and P. Limber. 2017. Can beaches survive climate change? Journal of Geophysical Research Earth Surface 122: 1060–1067. https://doi.org/10.1002/2017JF004308.

    Article  Google Scholar 

  • Watson, E.B., K.B. Raposa, J.C. Carey, C. Wigand, and R.S. Warren. 2017a. Anthropocene survival of Southern New England’s salt marshes. Estuaries and Coasts 40: 617–625.

    Article  Google Scholar 

  • Watson, E.B., C. Wigand, E.W. Davey, H.M. Andrews, J. Bishop, and K.B. Raposa. 2017b. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt marsh loss for southern New England. Estuaries and Coasts 40: 662–681.

    Article  Google Scholar 

  • Wu, W., K. Yeager, M. Peterson, and R. Fulford. 2015. Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM). Ecological Modelling 303: 55–69.

    Article  Google Scholar 

  • Wu, W., P. Biber, and M. Bethel. in press. Thresholds of sea-level rise rate and sea-level rise acceleration rate in a vulnerable coastal wetland. Ecology and Evolution.

    Google Scholar 

  • Xing, F. 2015. Deltas’ Responses to Fluvial and Marine Forces. Ph.D Dissertation, Submitted to the Graduate School of the University of Colorado, 165 pp.

    Google Scholar 

  • Zinnert, J.C., J.A. Stallins, S.T. Brantley, and D.R. young. 2017. Crossing scales: the complexity of barrier-island processes for predicting future change. BioScience 67: 39–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Donelson Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wright, L.D., Wu, W., Morris, J. (2019). Coastal Erosion and Land Loss: Causes and Impacts. In: Wright, L., Nichols, C. (eds) Tomorrow's Coasts: Complex and Impermanent. Coastal Research Library, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-75453-6_9

Download citation

Publish with us

Policies and ethics