Skip to main content

Next Generation Numerical Models to Address a Complex Future

  • Chapter
  • First Online:
Tomorrow's Coasts: Complex and Impermanent

Part of the book series: Coastal Research Library ((COASTALRL,volume 27))

  • 1091 Accesses

Abstract

Numerical models are essential tools to address many environmental issues including inundation, hypoxia, and harmful algal blooms. Scientists and engineers are continuing to develop models to simulate and forecast events of various space and time scales. New computational and networking capabilities are key to developing coupled models that will provide users with accurate environmental information, including uncertainty and probabilities. Increasing computing power allows a similar increase of spatial and temporal resolutions in coastal ocean models. Multidisciplinary and integrated modeling projects are improving our understanding of the interactions between physical and biogeochemical and biological phenomena. Model verification and validation is an essential component in producing accurate and credible models that highlight how ocean processes are shaping modern coastlines.

It is far better to foresee even without certainty than not to foresee at all.

—Henri Poincaré, 1913, The Foundations of Science

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allard, Richard, Erick Rogers, Paul Martin, Tommy Jensen, Philip Chu, Tim Campbell, James Dykes, Travis Smith, Jeikook Chu, and Uriah Gravois. 2014. The US navy coupled ocean-wave prediction system. Oceanography 27 (3): 92–103.

    Article  Google Scholar 

  • Baretta, J.W., W. Ebenhöh, and P. Ruardij. 1995. The European regional seas ecosytem model, a complex ecosystem model. Netherlands Journal of Sea Research 33 (3–4): 233–246.

    Article  Google Scholar 

  • Baschek, Burkard, and Jennifer Imai. 2011. Rogue wave observations off the US west coast. Oceanography 24 (2): 158–165.

    Article  Google Scholar 

  • Baskett, Marissa L., Fiorenza Micheli, and Simon A. Levin. 2007. Designing marine reserves for interacting species: Insights from theory. Biological Conservation 137: 163–179.

    Article  Google Scholar 

  • Begley, J., and D. Howell. 2004. An overview of gadget, the globally applicable area-disaggregated general ecosystem toolbox, 15. International Council for the Exploration of the Sea (ICES) Document CM 2004/FF: 13.

    Google Scholar 

  • Cardone, V.J., R.E. Jenson, D.T. Resio, V.R. Swail, and A.T. Cox. 1996. Evaluation of contemporary ocean wave models in rare extreme events: The “Halloween storm” of October 1991 and the “storm of the century” of March 1993. Journal of Atmospheric and Oceanic Technology 13: 198–230.

    Article  Google Scholar 

  • Cavaleri, Luigi. 2006. Wave modeling: Where to go in the future. Bulletin of the American Meteorological Society 87 (2): 207–214.

    Article  Google Scholar 

  • Chassignet, Eric P., and Jacques Verron, (eds.). 2006. Ocean weather forecasting: An integrated view of oceanography, 577. Dordrecht, Netherlands: Springer.

    Google Scholar 

  • Chen, S., J. Cummings, J. Doyle, R.H. Hodur, T. Holt, C. Liou, M. Liu, A. Mirin, J. Ridout, J.M. Schmidt, G. Sugiyama, and W.T. Thompson. 2003. COAMPS™ version 3 model description—General theory and equations, 148. NRL Publication NRL/PU/7500–03-448, May 2003, Monterey, CA: Naval Research Laboratory.

    Google Scholar 

  • Christensen, V., and D. Pauly. 1992. ECOPATH II—A software for balancing steady-state ecosystem models and calculating network characteristics. Ecolological Modelling 61 (3–4): 169–185.

    Article  Google Scholar 

  • Constable, A.J. 2005. Implementing plausible ecosystem models for the Southern Ocean an ecosystem, productivity, ocean, climate (EPOC) model, 20. Workshop document presented to WG-EMM subgroup of CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources), WG-EMM-05/33.

    Google Scholar 

  • Constable, A.J. 2006. Using the EPOC modelling framework to assess management procedures for Antarctic krill in Statistical Area 48: Evaluating spatial differences in productivity of Antarctic krill. Workshop document presented to WG-EMM subgroup of CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources), WG-EMM-06/38.

    Google Scholar 

  • Cousins, Will, and Themistoklis P. Sapsis. 2016. Reduced-order precursors of rare events in unidirectional nonlinear water waves. Journal of Fluid Mechanics 790: 368–388.

    Article  Google Scholar 

  • Deltares. 2014. Delft3D-flow, simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments, User manual, 684. Version 3.15.34158, May 2014.

    Google Scholar 

  • Deltares. 2015. Delft3D flexible mesh suite, D-flow FM in delta shell, user manual, 376. Version 1.1.148, November 2015.

    Google Scholar 

  • Devia, Gayathri K., B.P. Ganasri, and G.S. Dwarakish. 2015. A review of hydrological models. Aquatic Procedia 4: 1001–1007.

    Article  Google Scholar 

  • DHI. 2014. MIKE 21 flow model FM hydrodynamic module, user manual, 134. August 2014.

    Google Scholar 

  • Fox-Lent, Cate, Matthew E. Bates, and Igor Linkov. 2015. A matrix approach to community resilience assessment: An illustrative case at rockaway peninsula. Environment Systems and Decisions. 35 (2): 209–218.

    Article  Google Scholar 

  • Fulton, Elizabeth A., Anthony D.M. Smith, and Craig R. Johnson. 2004a. Biogeochemical marine ecosystem models I: IGBEM—A model of marine bay ecosystems. Ecological Modelling 174 (3): 267–307.

    Article  Google Scholar 

  • Fulton, Elizabeth. A., Anthony D.M. Smith, and André E. Punt. 2004b. Ecological indicators of the ecosystem effects of fishing: Final report. Report No. R99/1546, Canberra: Australian Fisheries Management Authority.

    Google Scholar 

  • Fulton, Elizabeth A., Anthony D.M. Smith, and André E. Punt. 2005. Which ecological indicators can robustly detect effects of fishing? ICES Journal of Marine Science 62 (3): 540–551.

    Article  Google Scholar 

  • Glahn, Bob, Arthur Taylor, Nicole Kurkowski, and Wilson A. Shaffer. 2009. The role of the SLOSH model in national weather service storm surge forecasting. National Weather Digest 33 (1): 3–14.

    Google Scholar 

  • Heymans, Johanna Jacomina, Marta Coll, Jason S. Link, Steven Mackinson, Jeroen Steenbeek, Carl Walters, and Villy Christensen. 2016. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecological Modelling 331: 173–184.

    Article  Google Scholar 

  • Hollowed, Anne B., Nicholas Bax, Richard Beamish, Jeremy Collie, Michael Fogarty, Patricia Livingston, John Pope, and Jake C. Rice. 2000. Are multispecies models an improvement on single-species models for measuring fishing impacts on marine ecosystems? ICES Journal of Marine Science 57: 707–719.

    Article  Google Scholar 

  • Huang, Yong, Robert H. Weisberg, Lianyuan Zheng, and Marcel Zijlema. 2013. Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula-based drag coefficient sensitivity for Hurricane Ike. Journal of Geophysical Research: Oceans 118 (8): 3916–3938.

    Google Scholar 

  • Link, J.S., E.A. Fulton, and R.J. Gamble. 2010. The northeast US application of ATLANTIS: A full system model exploring marine ecosystem dynamics in a living marine resource management context. Progress in Oceanography 87 (1–4): 214–234.

    Article  Google Scholar 

  • Luettich, R.A., and J.J. Westerink. 1991. A solution for the vertical variation of stress, rather than velocity, in a three-dimensional circulation model. International Journal for Numerical Methods in Fluids 12: 911–928.

    Article  Google Scholar 

  • Martin P.J. 2000. A description of the navy coastal ocean model version 1.0, 42. NRL Report NRL/FR/7322-00-9962, Stennis Space Center, MS: Naval Research Laboratory.

    Google Scholar 

  • McDonald, A.D., L. Richard Little, R. Gray, Elizabth Fulton, K.J. Sainsbury, and Vincent D. Lyne. 2006. Multiple use management strategy evaluation for coastal marine ecosytems using invitro. In Complex science for a complex world, ed. Pascal Perez, and David F. Batten, 2588–2594. Canberra: ANU E Press.

    Google Scholar 

  • Neumann, T. 2000. Towards a 3D-ecosystem model of the Baltic Sea. Journal of Marine Systems 25 (3–4): 405–419.

    Article  Google Scholar 

  • Neumann, T., W. Fennel, and C. Kremp. 2002. Experimental simulations with an ecosystem model of the Baltic Sea: A nutrient load reduction experiment. Global Biogeochemical Cycles 16 (3): 7–1–7-19.

    Article  Google Scholar 

  • Onorato, M., S. Residori, U. Bortolozzo, A. Montina, and F. Arecchi. 2013. Rogue waves and their generating mechanisms in different physical contexts. Physics Reports 528 (2): 47–89.

    Article  Google Scholar 

  • Pauly, D., V. Christensen, and C. Walters. 2000. Ecopath, ecosim, and ecospace as tools for evaluating ecosystem impact of fisheries. ICES Journal of Marine Science 57 (3): 697–706.

    Article  Google Scholar 

  • Resio, D.T., L. Vincent, and D. Ardag. 2017. Characteristics of directional wave spectra and implications for detailed-balance wave modeling. Ocean Modelling 103: 38–52. https://doi.org/10.1016/j.ocemod.2015.09.009.

    Article  Google Scholar 

  • Rosati, J.D., K.F. Touzinsky, and W.J. Lillycrop. 2015. Quantifying coastal system resilience for the USACE. Environment Systems and Decisions 35 (2): 196–208.

    Article  Google Scholar 

  • Sekine, Masahiko, Hiroshi Nakanishi, and Masao Ukita. 1991. A shallow-sea ecological model using an object-oriented programming language. Ecological Modelling 57 (3–4): 221–236.

    Article  Google Scholar 

  • Shchepetkin, Alexander F., and James C. McWilliams. 2005. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling 9 (4): 347–404.

    Article  Google Scholar 

  • Shin, Yunne-Jai, and Philippe Cury. 2001. Exploring fish community dynamics through size-dependent trophic interactions using a spatialized individual-based model. Aquatic Living Resources 14 (2): 65–80.

    Article  Google Scholar 

  • Shin, Yunne-Jae, and Philippe Cury. 2004. Using an individual-based model of fish assemblages to study the response of size spectra to changes in fishing. Canadian Journal of Fisheries and Aquatic Science 61 (3): 414–431.

    Article  Google Scholar 

  • Smit, Pieter, Tim Janssen, Cameron Dunning, and Wheeler Gans. 2017. Real-time wave assimilation using low-cost sensor arrays. In Proceedings of the ocean waves workshop, ed. C.R. Nichols, 7 Dec 2017. New Orleans, LA: University of New Orleans. Available online. https://scholarworks.uno.edu/cgi/viewcontent.cgi?article=1063&context=oceanwaves. Accessed 23 Jan 2018.

  • The WISE Group, L. Cavaleria, J.-H. G.M. Alves, F. Ardhuin, A. Babanin, M. Banner, K. Belibassakis, M. Benoit, M. Donelan, J. Groeneweg, T.H.C. Herbers, P. Hwang, P.A.E.M. Janssen, T. Janssen, I.V. Lavrenov, R. Magne, J. Monbaliu, M. Onorato, V. Polnikov, D. Resio, W.E. Rogers, A. Sheremet, J. McKee Smith, H.L. Tolman, G. van Vledder, J. Wolf, and I. Young. 2007. Progress in Oceanography 75 (4): 603–674.

    Article  Google Scholar 

  • Tjelmeland, Sigurd, and U. Ulf Lindstrøm. 2005. An ecosystem element added to the assessment of Norwegian spring spawning herring: Implementing predation by Minke Whales. ICES Journal of Marine Science 62 (2): 285–294.

    Article  Google Scholar 

  • Tschirhart, John. 2000. General equilibrium of an ecosystem. Journal of Theoretical Biology 203 (1): 13–32.

    Article  Google Scholar 

  • van der Wiel, Karin, Sarah B. Kapnick, Geert Jan, Kirien van Oldenborgh, Sjoukje Philip Whan, Gabriel A. Vecchi, Roop K. Singh, Julie Arrighi, and Heidi Cullen. 2017. Rapid attribution of the August 2016 flood-inducing extreme precipitation in South Louisiana to climate change. Hydrology and Earth System Science 21: 897–921.

    Article  Google Scholar 

  • Vincenot, C.E., S. Mazzoleni, and L. Parrott. 2016. Editorial: Hybrid solutions for the modeling of complex environmental systems. Frontiers in Environmental Science 4: 53. https://doi.org/10.3389/fenvs.2016.00053.

    Article  Google Scholar 

  • Walters, C., D. Pauly, and V. Christensen. 1999. Ecospace: Prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2 (6): 539–554.

    Article  Google Scholar 

  • Wendisch, M., et al. 2017. Understanding causes and effects of rapid warming in the Arctic. Eos 98. https://doi.org/10.1029/2017EO064803.

  • Werner, F.E., R.K. Cowen, and C.B. Paris. 2007. Coupled biological and physical models: Present capabilities and necessary developments for future studies of population connectivity. Oceanography 20 (3): 54–69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Reid Nichols .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Resio, D.T., Nichols, C.R. (2019). Next Generation Numerical Models to Address a Complex Future. In: Wright, L., Nichols, C. (eds) Tomorrow's Coasts: Complex and Impermanent. Coastal Research Library, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-75453-6_17

Download citation

Publish with us

Policies and ethics