Adaptive Sparse Grid Construction in a Context of Local Anisotropy and Multiple Hierarchical Parents

  • Miroslav StoyanovEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 123)


We consider general strategy for hierarchical multidimensional interpolation based on sparse grids, where the interpolation nodes and locally supported basis functions are constructed from tensors of a one dimensional hierarchical rule. We consider four different hierarchies that are tailored towards general functions, high or low order polynomial approximation, or functions that satisfy homogeneous boundary conditions. The main advantage of the locally supported basis is the ability to choose a set of functions based on the observed behavior of the target function. We present an alternative to the classical surplus refinement techniques, where we exploit local anisotropy and refine using functions with not strictly decreasing support. The more flexible refinement strategy improves stability and reduces the total number of expensive simulations, resulting in significant computational saving. We demonstrate the advantages of the different hierarchies and refinement techniques by application to series of simple functions as well as a system of ordinary differential equations given by the Kermack-McKendrick SIR model.


Sparse Grid Interpolation Nodes Purification Scheme Hierarchical Coefficients Multidimensional Hierarchy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration; the U.S. Defense Advanced Research Projects Agency, Defense Sciences Office under contract and award numbers HR0011619523 and 1868-A017-15; and by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory, which is operated by UT-Battelle, LLC., for the U.S. Department of Energy under Contract DE-AC05-00OR22725.


  1. 1.
    I. Babuška, R. Tempone, G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42(2), 800–825 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Bäck, F. Nobile, L. Tamellini, R. Tempone, Stochastic spectral galerkin and collocation methods for PDEs with random coefficients: a numerical comparison, in Spectral and High Order Methods for Partial Differential Equations (Springer, Berlin, 2011), pp. 43–62zbMATHGoogle Scholar
  3. 3.
    J. Bäck, F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal stochastic Galerkin methods for a class of PDEs with random coefficients. Comput. Math. Appl. 67(4), 732–751 (2014)Google Scholar
  4. 4.
    P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)Google Scholar
  5. 5.
    H.-J. Bungartz, Finite Elements of Higher Order on Sparse Grids (Shaker, Maastricht, 1998)Google Scholar
  6. 6.
    H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    H.-J. Bungartz, D. Pflüger, S. Zimmer, Adaptive sparse grid techniques for data mining, in Modeling, Simulation and Optimization of Complex Processes (Springer, Berlin, 2008), pp. 121–130CrossRefGoogle Scholar
  8. 8.
    G. Buse, D. Pfluger, A. Murarasu, R. Jacob, A non-static data layout enhancing parallelism and vectorization in sparse grid algorithms, in 11th International Symposium on Parallel and Distributed Computing (ISPDC), 2012 (IEEE, Washington, 2012), pp. 195–202Google Scholar
  9. 9.
    J.C. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley, Hoboken, 2016)CrossRefGoogle Scholar
  10. 10.
    M.A. Chkifa, On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection. J. Approx. Theory 166, 176–200 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Chkifa, A. Cohen, C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs. Found. Comput. Math. 14(4), 601–633 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Chkifa, N. Dexter, H. Tran, C.G. Webster, Polynomial approximation via compressed sensing of high-dimensional functions on lower sets (2016). ArXiv e-printsGoogle Scholar
  13. 13.
    N.C. Dexter, C.G. Webster, G. Zhang, Explicit cost bounds of stochastic Galerkin approximations for parameterized PDEs with random coefficients. Comput. Math. Appl. 71(11), 2231–2256 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Doostan, H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs. J. Comput. Phys. 230(8), 3015–3034 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    C.E. Finney, M.K. Stoyanov, S. Pannala, C.S. Daw, R.M. Wagner, K.D. Edwards, C.G. Webster, J.B. Green, Application of high performance computing for simulating the unstable dynamics of dilute spark-ignited combustion, in International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012) (Springer, Cham, 2014), pp. 259–270Google Scholar
  16. 16.
    G. Fishman, Monte Carlo: Concepts, Algorithms, and Applications. Springer Series in Operations Research (Springer, New York, 1996)Google Scholar
  17. 17.
    J. Garcke, Sparse grids in a nutshell, in Sparse Grids and Applications (Springer, Cham, 2012), pp. 57–80CrossRefGoogle Scholar
  18. 18.
    M.B. Giles, Multilevel monte carlo methods. Acta Numer. 24, 259 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    J.D. Jakeman, S.G. Roberts, Local and dimension adaptive stochastic collocation for uncertainty quantification, in Sparse Grids and Applications (Springer, Berlin, 2012), pp. 181–203Google Scholar
  20. 20.
    J.D. Jakeman, R. Archibald, D. Xiu, Characterization of discontinuities in high-dimensional stochastic problems on adaptive sparse grids. J. Comput. Phys. 230(10), 3977–3997 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J.D. Jakeman, A. Narayan, D. Xiu, Minimal multi-element stochastic collocation for uncertainty quantification of discontinuous functions. J. Comput. Phys. 242, 790–808 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    P. Jantsch, C.G. Webster, G. Zhang, On the Lebesgue constant of weighted Leja points for Lagrange interpolation on unbounded domains (2016). arXiv preprint arXiv:1606.07093Google Scholar
  23. 23.
    D.S. Jones, M. Plank, B.D. Sleeman, Differential Equations and Mathematical Biology (CRC Press, Boca Raton, 2009)zbMATHGoogle Scholar
  24. 24.
    W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 115 (The Royal Society, London, 1927), pp. 700–721zbMATHGoogle Scholar
  25. 25.
    V. Khakhutskyy, Sparse Grids for Big Data: Exploiting Parsimony for Large-Scale Learning, Ph.D. thesis, Universität München, 2016Google Scholar
  26. 26.
    V. Khakhutskyy, M. Hegland, Spatially-dimension-adaptive sparse grids for online learning, in Sparse Grids and Applications-Stuttgart 2014 (Springer, Cham, 2016), pp. 133–162CrossRefGoogle Scholar
  27. 27.
    A. Klimke, B. Wohlmuth, Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB. ACM Trans. Math. Softw. (TOMS) 31(4), 561–579 (2005)MathSciNetCrossRefGoogle Scholar
  28. 28.
    X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)MathSciNetCrossRefGoogle Scholar
  29. 29.
    A. Narayan, J.D. Jakeman, Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation. SIAM J. Sci. Comput. 36(6), A2952–A2983 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    F. Nobile, R. Tempone, C.G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    F. Nobile, R. Tempone, C.G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)MathSciNetCrossRefGoogle Scholar
  32. 32.
    F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal sparse-grid approximation of hilbert-space-valued functions: application to random elliptic PDEs. Numer. Math. 134(2), 343–388 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    E. Novak, K. Ritter, Simple cubature formulas with high polynomial exactness. Constr. Approx. 15(4), 499–522 (1999)MathSciNetCrossRefGoogle Scholar
  34. 34.
    D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut, München, 2010)zbMATHGoogle Scholar
  35. 35.
    D. Pflüger, Spatially adaptive refinement, in Sparse Grids and Applications (Springer, Berlin, 2012), pp. 243–262CrossRefGoogle Scholar
  36. 36.
    D. Pflüger, B. Peherstorfer, H.-J. Bungartz, Spatially adaptive sparse grids for high-dimensional data-driven problems. J. Complex. 26(5), 508–522 (2010)MathSciNetCrossRefGoogle Scholar
  37. 37.
    H. Royden, Real Analysis, vol. 1 (Macmillan, New York, 1968), p. 963Google Scholar
  38. 38.
    M. Stoyanov, Hierarchy-direction selective approach for locally adaptive sparse grids. Technical Report ORNL/TM-2013/384, Oak Ridge National Laboratory, Oak Ridge, 2013Google Scholar
  39. 39.
    M. Stoyanov, User manual: Tasmanian sparse grids. Technical Report ORNL/TM-2015/596, Oak Ridge National Laboratory, Oak Ridge, 2015Google Scholar
  40. 40.
    M. Stoyanov, C.G. Webster, A gradient-based sampling approach for dimension reduction of partial differential equations with stochastic coefficients. Int. J. Uncertain. Quantif. 5(1), 49–72 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    M.K. Stoyanov, C.G. Webster, A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional functions. Comput. Math. Appl. 71(11), 2449–2465 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    M. Stoyanov, P. Seleson, C. Webster, Predicting fracture patterns in simulations of brittle materials under variable load and material strength, in 19th AIAA Non-Deterministic Approaches Conference (2017), p. 1326Google Scholar
  43. 43.
    G. Zhang, M. Gunzburger, Error analysis of a stochastic collocation method for parabolic partial differential equations with random input data. SIAM J. Numer. Anal. 50(4), 1922–1940 (2012)MathSciNetCrossRefGoogle Scholar
  44. 44.
    G. Zhang, C. Webster, M. Gunzburger, J. Burkardt, A hyperspherical adaptive sparse-grid method for high-dimensional discontinuity detection. SIAM J. Numer. Anal. 53(3), 1508–1536 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    G. Zhang, C.G. Webster, M. Gunzburger, J. Burkardt, Hyperspherical sparse approximation techniques for high-dimensional discontinuity detection. SIAM Rev. 58(3), 517–551 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations