Advertisement

Limiting Ranges of Function Values of Sparse Grid Surrogates

  • Fabian Franzelin
  • Dirk PflügerEmail author
Conference paper
  • 354 Downloads
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 123)

Abstract

Sparse grid interpolants of high-dimensional functions do not maintain the range of function values. This is a core problem when one is dealing with probability density functions, for example. We present a novel approach to limit range of function values of sparse grid surrogates. It is based on computing minimal sets of sparse grid indices that extend the original sparse grid with properly chosen coefficients such that the function value range of the resulting surrogate function is limited to a certain interval. We provide the prerequisites for the existence of minimal extension sets and formally derive the intersection search algorithm that computes them efficiently. The main advantage of this approach is that the surrogate remains a linear combination of basis functions and, therefore, any problem specific post-processing operation such as evaluation, quadrature, differentiation, regression, density estimation, etc. can remain unchanged. Our sparse grid approach is applicable to arbitrarily refined sparse grids.

Notes

Acknowledgements

The authors acknowledge the German Research Foundation (DFG) for its financial support of the project within the Cluster of Excellence in Simulation Technology at the University of Stuttgart.

References

  1. 1.
    H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    C. Feuersänger, Sparse grid methods for higher dimensional approximation. Ph.D. thesis, Rheinischen Friedrich–Wilhelms–Universität Bonn, 2010Google Scholar
  3. 3.
    F. Franzelin, D. Pflüger, From data to uncertainty: an efficient integrated data-driven sparse grid approach to propagate uncertainty, in Sparse Grids and Applications - Stuttgart 2014, ed. by J. Garcke, D. Pflüger (Springer International Publishing, Cham, 2016), pp. 29–49CrossRefGoogle Scholar
  4. 4.
    F. Franzelin, P. Diehl, D. Pflüger, Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations, in Meshfree Methods for Partial Differential Equations VII, ed. by M. Griebel, M. A. Schweitzer. Lecture Notes in Computational Science and Engineering, vol. 100 (Springer International Publishing, Berlin, 2015), pp. 115–143Google Scholar
  5. 5.
    M. Frommert, D. Pflüger, T. Riller, M. Reinecke, H.-J. Bungartz, T. Enßlin, Efficient cosmological parameter sampling using sparse grids. Mon. Not. R. Astron. Soc. 406(2), 1177–1189 (2010)Google Scholar
  6. 6.
    J. Garcke, Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern. Ph.D. thesis, University of Bonn, Institute for Numerical Simulation, 2004Google Scholar
  7. 7.
    M. Griebel, M. Hegland, A finite element method for density estimation with Gaussian process priors. SIAM J. Numer. Anal. 47(6), 4759–4792 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Hegland, G. Hooker, S. Roberts, Finite element thin plate splines in density estimation. ANZIAM J. 42, 712–734 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    B. Peherstorfer, D. Pflüger, H.-J. Bungartz, Clustering based on density estimation with sparse grids, in KI 2012: Advances in Artificial Intelligence, ed. by B. Glimm, A. Krüger. Lecture Notes in Computer Science, vol. 7526 (Springer, Berlin, 2012), pp. 131–142Google Scholar
  10. 10.
    B. Peherstorfer, F. Franzelin, D. Pflüger, H.-J. Bungartz, Classification with Probability Density Estimation on Sparse Grids (Springer International Publishing, Cham, 2014), pp. 255–270zbMATHGoogle Scholar
  11. 11.
    B. Peherstorfer, D. Pflüger, H.-J. Bungartz, Density estimation with adaptive sparse grids for large data sets, in Proceedings of the 2014 SIAM International Conference on Data Mining (2014), pp. 443–451CrossRefGoogle Scholar
  12. 12.
    D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut, München, 2010)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Parallel and Distributed SystemsUniversity of StuttgartStuttgartGermany

Personalised recommendations