Advertisement

Comparing Nested Sequences of Leja and PseudoGauss Points to Interpolate in 1D and Solve the Schroedinger Equation in 9D

  • Gustavo Avila
  • Jens Oettershagen
  • Tucker CarringtonJr.Email author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 123)

Abstract

In this article, we use nested sets of weighted Leja points, which have previously been studied as interpolation points, as collocation points to solve a 9D vibrational Schroedinger equation. Collocation has the advantage that it obviates the need to compute integrals with quadrature. A multi-dimension sparse grid is built from the Leja points and Hermite-type basis functions by restricting sparse grid levels i c using ∑ c g c (i c ) ≤ H, where g c (i c ) is a non-decreasing function and H is a parameter that controls the accuracy. Results obtained with Leja points are compared to those obtained with PseudoGauss points. PseudoGauss points are also nested. They are chosen to improve the accuracy of the Gram matrix. With both Leja and PseudoGauss points it is possible to add one point per level. We also compare Lebesgue constants for weighted Leja and PseudoGauss points.

Keywords

Nested Sequence Lebesgue Constants Sparse Grid Leja Points Interpolation Points 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research reported in this article was funded by The Natural Sciences and Engineering Research Council of Canada and the DFG via project GR 1144/21-1. We are grateful for important discussions about Leja points with Peter Jantsch.

References

  1. 1.
    E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide, 3rd edn. (Society for Industrial and Applied Mathematics, Philadelphia, 1999). ISBN: 0-89871-447-8 (paperback)Google Scholar
  2. 2.
    G. Avila, T. Carrington Jr., Nonproduct quadrature grids for solving the vibrational Schrödinger equation. J. Chem. Phys. 131, 174103 (2009)CrossRefGoogle Scholar
  3. 3.
    G. Avila, T. Carrington Jr., Using a pruned basis, a non-product quadrature grid, and the exact Watson normal-coordinate kinetic energy operator to solve the vibrational Schrödinger equation for C2H4. J. Chem. Phys. 135, 064101 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Avila, T. Carrington Jr., Using nonproduct quadrature grids to solve the vibrational Schrödinger equation in 12D. J. Chem. Phys. 134, 054126 (2011)CrossRefGoogle Scholar
  5. 5.
    G. Avila, T. Carrington Jr., Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures. J. Chem. Phys. 137, 174108 (2012)CrossRefGoogle Scholar
  6. 6.
    G. Avila, T. Carrington Jr., Solving the Schrödinger equation using Smolyak interpolants. J. Chem. Phys. 139, 134114 (2013)CrossRefGoogle Scholar
  7. 7.
    G. Avila, T. Carrington Jr., A multi-dimensional Smolyak collocation method in curvilinear coordinates for computing vibrational spectra. J. Chem. Phys. 143, 214108 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Avila, T. Carrington, Pruned bases that are compatible with iterative eigensolvers and general potentials: new results for CH3CN. Chem. Phys. 482, 3–8 (2017)CrossRefGoogle Scholar
  9. 9.
    G. Avila, T. Carrington, Computing vibrational energy levels of CH4 with a Smolyak collocation method. J. Chem. Phys. 147, 144102 (2017)CrossRefGoogle Scholar
  10. 10.
    V. Barthelmann, E. Novak, K. Ritter, High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S.F. Boys, Some bilinear convergence characteristics of the solutions of dissymmetric secular equations. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 309, 195–208 (1969)CrossRefGoogle Scholar
  12. 12.
    M.J. Bramley, T. Carrington Jr., A general discrete variable method to calculate vibrational energy levels of three and four atom molecules. J. Chem. Phys. 99, 8519–8541 (1993)CrossRefGoogle Scholar
  13. 13.
    T. Carrington Jr., Perspective: computing (ro-) vibrational spectra of molecules with more than four atoms. J. Chem. Phys. 146(12), 120902 (2017)Google Scholar
  14. 14.
    E. Castro, G. Avila, S. Manzhos, J. Agarwal, H.F. Schaefer, T. Carrington Jr., Applying a Smolyak collocation method to Cl2CO. Mol. Phys. 115(15–16), 1775–1785 (2017). https://doi.org/10.1080/00268976.2016.1271153 CrossRefGoogle Scholar
  15. 15.
    S. Damelin, The weighted Lebesgue constant of Lagrange interpolation for exponential weights on [− 1, 1]. Acta Math. Hungar. 81, 223–240 (1998)Google Scholar
  16. 16.
    M. Griebel, J. Oettershagen, On tensor product approximation of analytic functions. J. Approx. Theory 207, 348–379 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    R. Gunttner, Evaluation of Lebesgue constants. SIAM J. Numer. Anal. 17(4), 512–520 (1980)MathSciNetCrossRefGoogle Scholar
  18. 18.
    T. Halverson, B. Poirier, Calculation of exact vibrational spectra for P2O and CH2NH using a phase space wavelet basis. J. Chem. Phys. 140, 204112 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Heiss, V. Winschel, Likelihood approximation by numerical integration on sparse grids. J. Econ. 144, 62–80 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    B.A. Ibrahimoglu, Lebesgue functions and Lebesgue constants in polynomial interpolation. J. Inequal. Appl. 2016(1), 93 (2016)Google Scholar
  21. 21.
    P. Jantsch, C.G. Webster, G. Zhang, On the Lebesgue constant of weighted Leja points for Lagrange interpolation on unbounded domains (2016). arXiv preprint arXiv:1606.07093Google Scholar
  22. 22.
    H. Koeppel, W. Domcke, L.S. Cederbaum, Multimode molecular dynamics beyond the Born Oppenheimer approximation. Adv. Chem. Phys. 57, 59–246 (1984)Google Scholar
  23. 23.
    D. Lauvergnat, A. Nauts, Quantum dynamics with sparse grids: a combination of Smolyak scheme and cubature. Application to methanol in full dimensionality. Spectrochim. Acta A Mol. Biomol. Spectrosc. 119, 18–25 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Leforestier, L.B. Braly, K. Liu, M.J. Elrod, R.J. Saykally, Fully coupled six-dimensional calculations of the water dimer vibration-rotation-tunneling states with a split Wigner pseudo spectral approach. J. Chem. Phys. 106, 8527–8544 (1997)CrossRefGoogle Scholar
  25. 25.
    R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods (SIAM, Philadelphia, 1998). http://www.caam.rice.edu/software/ARPACK CrossRefGoogle Scholar
  26. 26.
    F. Leja, Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme. Ann. Polon. Math. 4, 8–13 (1957)MathSciNetCrossRefGoogle Scholar
  27. 27.
    J.C. Light, T. Carrington Jr., Discrete-variable representations and their utilization. Adv. Chem. Phys. 114, 263–310 (2000)Google Scholar
  28. 28.
    U. Manthe, H. Köppel, New method for calculating wave packet dynamics: strongly coupled surfaces and the adiabatic basis. J. Chem. Phys. 93, 345–356 (1990)CrossRefGoogle Scholar
  29. 29.
    A. Narayan, J.D. Jakeman, Adaptive Leja sparse grid constructions for stochastic collocation and high-dimensional approximation. SIAM J. Sci. Comput. 36, A2952–A2983 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    E. Novak, K. Ritter, High dimensional integration of smooth functions over cubes. Numer. Math. 75, 79–97 (1996)MathSciNetCrossRefGoogle Scholar
  31. 31.
    C.C. Paige, Computational variants of the Lanczos method for the eigenproblem. IMA J. Appl. Math. 10, 373–381 (1972)MathSciNetCrossRefGoogle Scholar
  32. 32.
    K. Petras, Smolyak cubature of given polynomial degree with few nodes for increasing dimension. Numer. Math. 93, 729–753 (2003)MathSciNetCrossRefGoogle Scholar
  33. 33.
    C. Pouchan, K. Zaki, Ab initio configuration interaction determination of the overtone vibrations of methyleneimine in the region 2800–3200 cm−1. J. Chem. Phys. 107, 342–345 (1997)CrossRefGoogle Scholar
  34. 34.
    T.J. Rivlin, An Introduction to the Approximation of Functions (Courier Corporation, North Chelmsford, 2003)zbMATHGoogle Scholar
  35. 35.
    T. Rowan, The subplex method for unconstrained optimization. Dissertation Ph.D. thesis, Department of Computer Sciences, University of Texas, 1990Google Scholar
  36. 36.
    P. Sarkar, N. Poulin, T. Carrington Jr., Calculating rovibrational energy levels of a triatomic molecule with a simple Lanczos method. J. Chem. Phys. 110, 10269–10274 (1999)CrossRefGoogle Scholar
  37. 37.
    J. Shen, H. Yu, Efficient spectral sparse grid methods and applications to high-dimensional elliptic problems. SIAM J. Sci. Comput. 32, 3228–3250 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 123 (1963)zbMATHGoogle Scholar
  39. 39.
    M.K. Stoyanov, C.G. Webster, A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional functions. Comput. Math. Appl. 71, 2449–2465 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    J. Szabados, Weighted Lagrange and Hermite-Fejer interpolation on the real line. J. Inequal. Appl. 1, 99–123 (1997)MathSciNetzbMATHGoogle Scholar
  41. 41.
    J. Szabados, P. Vértesi, Interpolation of Functions (World Scientific, Singapore, 1990)CrossRefGoogle Scholar
  42. 42.
    P. Vértesi, On the Lebesgue function of weighted Lagrange interpolation. II. J. Aust. Math. Soc. A 65, 145–162 (1998)MathSciNetCrossRefGoogle Scholar
  43. 43.
    X.G. Wang, T. Carrington, The utility of constraining basis function indices when using the Lanczos algorithm to calculate vibrational energy levels. J. Phys. Chem. A 105, 2575–2581 (2001)CrossRefGoogle Scholar
  44. 44.
    X.G. Wang, T. Carrington Jr., Computing rovibrational levels of methane with curvilinear internal vibrational coordinates and an Eckart frame. J. Chem. Phys. 138, 104106 (2013)CrossRefGoogle Scholar
  45. 45.
    E.B. Wilson Jr., J.C. Decius, P.C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Dover, New York, 2000)Google Scholar
  46. 46.
    D. Xu, R. Chen, H. Guo, Probing highly excited vibrational eigenfunctions using a modified single Lanczos propagation method: application to acetylene (HCCH). J. Chem. Phys. 118, 7273–7282 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gustavo Avila
    • 1
  • Jens Oettershagen
    • 2
  • Tucker CarringtonJr.
    • 1
    Email author
  1. 1.Chemistry DepartmentQueen’s UniversityKingstonCanada
  2. 2.Institute for Numerical SimulationUniversity of BonnBonnGermany

Personalised recommendations