Skip to main content

A Constraint-Based Framework for Scheduling Problems

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2018)

Abstract

Scheduling and resource allocation problems are widespread in many areas of today’s technology and management. Their different forms and structures appear in production, logistics, software engineering, computer networks, etc. In practice, however, classical scheduling problems with fixed structures and only standard constraints (precedence, disjoint etc.) are rare. Practical scheduling problems include also logical and non-linear constraints and use non-standard criteria of schedule evaluations. In many cases, decision makers are interested in the feasibility and/or optimality of a given schedule for specified conditions formulated as questions, for example, Is it possible…?, What is the minimum/maximum…?, What if..? etc. Thus there is a need to develop a programming framework that will facilitate the modeling and solving a variety of diverse scheduling problems. This paper proposes such a constraint-based framework for modeling and solving scheduling problems. It was built with the CLP (Constraint Logic Programming) environment and supported with MP (Mathematical Programming).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Błażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Handbook on Scheduling From Theory to Applications. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-32220-7. ISBN:978-3-540-28046-0

    MATH  Google Scholar 

  2. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

  3. Milano, M., Wallace, M.: Integrating operations research. Constraint Program. Ann. Oper. Res. 175(1), 37–76 (2010)

    Article  MATH  Google Scholar 

  4. Hooker, J.N.: Logic, optimization and constraint programming. INFORMS J. Comput. 14, 295–321 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Sitek, P., Wikarek, J.: A hybrid programming framework for modeling and solving constraint satisfaction and optimization problems. Sci. Program. 2016, 13 (2016). https://doi.org/10.1155/2016/5102616. Article ID 5102616

    Google Scholar 

  6. Sitek, P., Wikarek, J., Nielsen, P.: A constraint-driven approach to food supply chain management. Ind. Manag. Data Syst. 117(9) (2017). https://doi.org/10.1108/imds-10-2016-0465. Article ID 600090

  7. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 4, 287–326 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coelho, J., Vanhoucke, M.: Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers. Eur. J. Oper. Res. 213, 73–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foundations of Artificial Intelligence). Elsevier Science Inc., New York (2006)

    MATH  Google Scholar 

  10. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to integrate CP and MIP. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68155-7_4

    Chapter  Google Scholar 

  11. Eclipse – home. www.eclipse.org. Accessed 5 July 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Sitek .

Editor information

Editors and Affiliations

Appendix A Models and Facts

Appendix A Models and Facts

(See Tables 5, 6, 7 and 8).

Table 7. Description of the constraints for both models
Table 8. Description of the facts
$$ {\text{Wp}} = \sum\limits_{{{\text{b}} = 1}}^{\text{LB}} {\sum\limits_{{{\text{a}} = 1}}^{\text{LA}} {\sum\limits_{{{\text{c}} = 1}}^{\text{LC}} {\sum\limits_{{{\text{d}} = 1}}^{\text{LD}} {{\text{X}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{d}}}} \cdot } {\text{ro}}_{\text{c}} } } } $$
(1)
$$ {\text{Z}}_{{{\text{b}},{\text{a}}}} \le {\text{Cmax}} \forall {\text{b}} = 1..{\text{LB}},{\text{a}} = 1..{\text{LA}} $$
(2)
$$ \sum\limits_{{{\text{c}} = 1}}^{\text{LC}} {\sum\limits_{{{\text{d}} = 1}}^{\text{LD}} {{\text{bo}}_{{{\text{b}},{\text{a}},{\text{c}}}} \cdot {\text{X}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{d}}}} } } = {\text{ex}}_{{{\text{b}},{\text{a}}}} \cdot {\text{za}}_{\text{b}} \forall {\text{b}} = 1..{\text{LB}},{\text{a}} = 1..{\text{LA}}:{\text{ex}}_{{{\text{b}},{\text{a}}}} > 0 $$
(3)
$$ \sum\limits_{{{\text{b}} = 1}}^{\text{LB}} {\sum\limits_{{{\text{c}} = 1}}^{\text{LC}} {{\text{X}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{d}}}} } } \le 1\forall {\text{a}} = 1..{\text{LA}},{\text{d}} = 1..{\text{LD}} $$
(4)
$$ \sum\limits_{a = 1}^{\text{LA}} {\sum\limits_{{{\text{b}} = 1}}^{\text{LB}} {{\text{bo}}_{{{\text{b}},{\text{a}},{\text{c}}}} \cdot {\text{X}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{d}}}} } } \le {\text{fo}}_{\text{c}} \forall {\text{c}} = 1..{\text{LC}},{\text{d}} = 1..{\text{LD}} $$
(5)
$$ {\text{X}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{d}} - 1}} - {\text{X}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{d}}}} \le {\text{Y}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{d}} - 1}} \forall {\text{a}} = 1..{\text{LA}},{\text{b}} = 1..{\text{LB}},{\text{c}} = 1..{\text{LC}},{\text{d}} = 2..{\text{LD}} $$
(6)
$$ \begin{array}{*{20}c} {\sum\limits_{{{\text{d}} = 1}}^{\text{LD}} {\sum\limits_{{{\text{c}} = 1}}^{\text{LC}} {{\text{Y}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{d}}}} } } = 1\forall {\text{a}} = 1..{\text{LA}},{\text{b}} = 1..{\text{LB}}:{\text{ti}}_{\text{ba}} > 0} \\ {{\text{Y}}_{{{\text{b}},{\text{a}},{\text{c}},1}} = 0\forall {\text{a}} = 1..{\text{LA}},{\text{b}} = 1..{\text{LB}},{\text{C}} = 1..{\text{LC}},{\text{Y}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{LD}}}} = 0\forall {\text{a}} = 1..{\text{LA}},{\text{b}} = 1..{\text{LB}},{\text{C}} = 1..{\text{LC}}} \\ \end{array} $$
(7)
$$ {\text{Z}}_{{{\text{b}},{\text{a}}}} = \sum\limits_{{{\text{c}} = 1}}^{\text{LC}} {\sum\limits_{{{\text{d}} = 1}}^{\text{LD}} {({\text{pr}}_{\text{d}} \cdot {\text{Y}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{d}}}} )} } \forall {\text{a}} = 1..{\text{LA}},{\text{b}} = 1..{\text{LB}}:{\text{ex}}_{{{\text{b}},{\text{a}}}} > 0 $$
(8)
$$ {\text{Z}}_{{{\text{b}},{\text{a}}2}} - {\text{za}}_{\text{b}} \cdot {\text{ex}}_{{{\text{b}},{\text{a}}2}} \ge {\text{Z}}_{{{\text{b}},{\text{a}}1}} \forall {\text{b}} = 1..{\text{LB}},{\text{a}}1,{\text{a}}2 = 1..{\text{LA}}:{\text{go}}_{{{\text{b}},{\text{a}}1,{\text{a}}2}} = 1 $$
(9)
$$ {\text{X}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{d}}}} \in \{ 0,1\} \forall {\text{b}} = 1..{\text{LB}},{\text{a}} = 1..{\text{LA}},{\text{c}} = 1..{\text{LC}},{\text{d}} = 1..{\text{LD}};{\text{Y}}_{{{\text{b}},{\text{a}},{\text{c}},{\text{d}}}} \in \{ 0,1\} \forall {\text{b}} = 1..{\text{LB}},{\text{a}} = 1..{\text{LA}},{\text{c}} = 1..{\text{LC}},{\text{d}} = 1..{\text{LD}} $$
(10)
$$ {\text{Wp}} = \sum\limits_{{{\text{f}} = 1}}^{\text{LF}} {{\text{X}}_{{{\text{f}},{\text{d}}}} \cdot {\text{ro}}_{\text{f}} } $$
(1T)
$$ {\text{Z}}_{\text{f}} \le {\text{Cmax}} \forall {\text{f}} = 1..{\text{LF}} $$
(2T)
$$ \sum\limits_{{{\text{f}} = 1}}^{\text{LF}} {\sum\limits_{{{\text{d}} = 1}}^{\text{LD}} {{\text{ist}}3_{{{\text{f}},{\text{b}}}} \cdot {\text{ist}}2_{{{\text{f}},{\text{a}}}} \cdot {\text{X}}_{{{\text{f}},{\text{d}}}} } } = {\text{ex}}_{{{\text{b}},{\text{a}}}} \cdot {\text{za}}_{\text{b}} \forall {\text{b}} = 1..{\text{LB}},{\text{a}} = 1..{\text{LA}}:{\text{ex}}_{{{\text{b}},{\text{a}}}} > 0 $$
(3T)
$$ \sum\limits_{{{\text{f}} = 1}}^{\text{LF}} {{\text{ist}}2_{{{\text{f}},{\text{a}}}} \cdot {\text{X}}_{{{\text{f}},{\text{d}}}} } \le 1\forall {\text{a}} = 1..{\text{LA}},{\text{d}} = 1..{\text{LD}} $$
(4T)
$$ \sum\limits_{{{\text{f}} = 1}}^{\text{LF}} {{\text{ist}}1_{{{\text{f}},{\text{c}}}} \cdot {\text{bo}}_{{{\text{f}},{\text{c}}}} \cdot {\text{X}}_{{{\text{f}},{\text{d}}}} } \le {\text{fo}}_{\text{c}} \forall {\text{c}} = 1..{\text{LC}},{\text{d}} = 1..{\text{LD}} $$
(5T)
$$ {\text{X}}_{{{\text{f}},{\text{d}} - 1}} - {\text{X}}_{{{\text{f}},{\text{d}}}} \le {\text{Y}}_{{{\text{f}},{\text{d}} - 1}} \forall {\text{f}} = 1..{\text{F}},{\text{d}} = 2..{\text{LD}} $$
(6T)
$$ \sum\limits_{{{\text{d}} = 1}}^{\text{LD}} {\sum\limits_{{{\text{f}} = 1}}^{\text{LF}} {{\text{ist}}2_{{{\text{f}},{\text{a}}}} \cdot {\text{ist}}3_{{{\text{f}},{\text{b}}}} \cdot {\text{Y}}_{{{\text{f}},{\text{d}}}} } } \le 1\forall {\text{a}} = 1..{\text{FA}},{\text{b}} = 1..{\text{FB}}:{\text{ex}}_{{{\text{b}},{\text{a}}}} > 0{\text{Y}}_{{{\text{f}},1}} = 0\forall {\text{f}} = 1..{\text{LFY}}_{{{\text{f}}.,{\text{LD}}}} = 0 $$
(7T)
$$ {\text{Z}}_{\text{f}} = \sum\limits_{{{\text{f}} = 1}}^{\text{LF}} {{\text{pr}}_{\text{d}} \cdot {\text{X}}_{{{\text{f}},{\text{d}}}} } \forall {\text{f}} = 1..{\text{LF}} $$
(8T)
$$ \sum\limits_{{{\text{f}} = 1}}^{\text{LF}} {({\text{ist}}2_{{{\text{f}},{\text{a}}2}} \cdot {\text{ist}}3_{{{\text{f}},{\text{b}}}} \cdot {\text{Z}}_{\text{f}} )} - {\text{za}}_{\text{b}} \cdot {\text{ex}}_{{{\text{b}},{\text{a}}2}} \ge \sum\limits_{{{\text{f}} = 1}}^{\text{LF}} {({\text{ist}}2_{{{\text{f}},{\text{a}}1}} \cdot {\text{ist}}3_{{{\text{f}},{\text{b}}}} \cdot {\text{Z}}_{\text{f}} )} \forall {\text{b}} = 1..{\text{LB}},{\text{a}}1,{\text{a}}2 = 1..{\text{LA}}:{\text{go}}_{{{\text{b}},{\text{a}}1,{\text{a}}2}} = 1 $$
(9T)
$$ {\text{X}}_{{{\text{f}},{\text{d}}}} \in \{ 0,1\} \forall {\text{f}} = 1..{\text{LF}},{\text{d}} = 1..{\text{LD}};{\text{Y}}_{{{\text{f}},{\text{d}}}} \in \{ 0,1\} \forall {\text{f}} = 1..{\text{LF}},{\text{d}} = 1..{\text{LD}} $$
(10T)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wikarek, J., Sitek, P., Stefański, T. (2018). A Constraint-Based Framework for Scheduling Problems. In: Nguyen, N., Hoang, D., Hong, TP., Pham, H., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science(), vol 10751. Springer, Cham. https://doi.org/10.1007/978-3-319-75417-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75417-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75416-1

  • Online ISBN: 978-3-319-75417-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics