Skip to main content

The Role of Hypoxia, Hypoxia-Inducible Factor (HIF), and VEGF in Retinal Angiomatous Proliferation

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1074))

Abstract

In industrialized countries, age-related macular degeneration (AMD) is the leading cause of blindness in elderly people. Hallmarks of the non-neovascular (dry) form of AMD are the formation of drusen and geographic atrophy, whereas the exudative (wet) form of the disease is characterized by invading blood vessels. In retinal angiomatous proliferation (RAP), a special form of wet AMD, intraretinal vessels grow from the deep plexus into the subretinal space. Little is known about the mechanisms leading to intraretinal neovascularization, but age-related changes such as reduction of choroidal blood flow, accumulation of drusen, and thickening of the Bruch’s membrane may lead to reduced oxygen availability in photoreceptors. Such a chronic hypoxic situation may induce several cellular response pathways including the stabilization of hypoxia-inducible factors (HIFs) and the production of angiogenic factors, such as vascular endothelial growth factor (VEGF). Here, we discuss the potential contribution of hypoxia and HIFs in RAP disease pathology and in some mouse models for subretinal neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMD:

Age-related macular degeneration

CNV:

Choroidal neovascularization

HIF:

Hypoxia-inducible factors

PND:

Postnatal day

RAP:

Retinal angiomatous proliferation

RPE:

Retinal pigment epithelium

VEGF:

Vascular endothelial growth factor

VLDLR:

Very low-density lipoprotein receptor

References

  • Aiello LP, Avery RL, Arrigg PG et al (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487

    Article  CAS  Google Scholar 

  • Arjamaa O, Nikinmaa M, Salminen A et al (2009) Regulatory role of HIF-1 a in the pathogenesis of age-related macular. Ageing Res Rev 8:349–358

    Article  CAS  Google Scholar 

  • Atmani K, Voigt M, Le Tien V et al (2010) Ranibizumab for retinal angiomatous proliferation in age-related macular degeneration. Eye (Lond) 24:1193–1198

    Article  CAS  Google Scholar 

  • Bottoni F, Massacesi A, Cigada M et al (2005) Treatment of retinal angiomatous proliferation in age-related macular degeneration: a series of 104 cases of retinal angiomatous proliferation. Arch Ophthalmol 123:1644–1650

    Article  Google Scholar 

  • Bressler NM, Bressler SB, Fine SL (1988) Age-related macular degeneration. Surv Ophthalmol 32:375–413

    Article  CAS  Google Scholar 

  • Campochiaro PA (2013) Ocular neovascularization. J Mol Med (Berl) 91:311–321

    Article  CAS  Google Scholar 

  • Caprara C, Grimm C (2012) From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res 31:89–119

    Article  CAS  Google Scholar 

  • Cash TP, Pan Y, Simon MC (2007) Reactive oxygen species and cellular oxygen sensing. Free Radic Biol Med 43:1219–1225

    Article  CAS  Google Scholar 

  • Cohen SY, Creuzot-Garcher C, Darmon J et al (2007) Types of choroidal neovascularisation in newly diagnosed exudative age-related macular degeneration. Br J Ophthalmol 91:1173–1176

    Article  CAS  Google Scholar 

  • Dehne N, Brune B (2009) HIF-1 in the inflammatory microenvironment. Exp Cell Res 315:1791–1797

    Article  CAS  Google Scholar 

  • Dorrell MI, Aguilar E, Jacobson R et al (2009) Antioxidant or neurotrophic factor treatment preserves function in a mouse model of neovascularization-associated oxidative stress. J Clin Invest 119:611–623

    Article  CAS  Google Scholar 

  • Engelbert M, Zweifel SA, Freund KB (2009) “Treat and extend” dosing of intravitreal antivascular endothelial growth factor therapy for type 3 neovascularization/retinal angiomatous proliferation. Retina 29:1424–1431

    Article  Google Scholar 

  • Freund KB, Ho IV, Barbazetto IA et al (2008) Type 3 neovascularization: the expanded spectrum of retinal angiomatous proliferation. Retina 28:201–211

    Article  Google Scholar 

  • Frykman PK, Brown MS, Yamamoto T et al (1995) Normal plasma lipoproteins and fertility in gene-targeted mice homozygous for a disruption in the gene encoding very low density lipoprotein receptor. Proc Natl Acad Sci U S A 92:8453–8457

    Article  CAS  Google Scholar 

  • Grimm C, Wenzel A, Groszer M et al (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8:718–724

    Article  CAS  Google Scholar 

  • Gross NE, Aizman A, Brucker A et al (2005) Nature and risk of neovascularization in the fellow eye of patients with unilateral retinal angiomatous proliferation. Retina 25:713–718

    Article  Google Scholar 

  • Grossniklaus HE, Kang SJ, Berglin L (2010) Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res 29:500–519

    Article  Google Scholar 

  • Harris A, Chung HS, Ciulla TA et al (1999) Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration. Prog Retin Eye Res 18:669–687

    Article  CAS  Google Scholar 

  • Hartnett ME, Weiter JJ, Staurenghi G et al (1996) Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. Ophthalmology 103:2042–2053

    Article  CAS  Google Scholar 

  • Heckenlively JR, Hawes NL, Friedlander M et al (2003) Mouse model of subretinal neovascularization with choroidal anastomosis. Retina 23:518–522

    Article  Google Scholar 

  • Hu W, Jiang A, Liang J et al (2008) Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model's retinal angiomatous proliferation. Invest Ophthalmol Vis Sci 49:407–415

    Article  Google Scholar 

  • Inoue Y, Yanagi Y, Matsuura K et al (2007) Expression of hypoxia-inducible factor 1alpha and 2alpha in choroidal neovascular membranes associated with age-related macular degeneration. Br J Ophthalmol 91:1720–1721

    Article  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  CAS  Google Scholar 

  • Joyal JS, Sun Y, Gantner ML et al (2016) Retinal lipid and glucose metabolism dictates angiogenesis through the lipid sensor Ffar1. Nat Med 22:439–445

    Article  CAS  Google Scholar 

  • Kent DL (2014) Age-related macular degeneration: beyond anti-angiogenesis. Mol Vis 20:46–55

    PubMed  PubMed Central  Google Scholar 

  • Kim JH, Kim JR, Kang SW et al (2013) Thinner choroid and greater drusen extent in retinal angiomatous proliferation than in typical exudative age-related macular degeneration. Am J Ophthalmol 155:743–749. 749 e741–742

    Article  Google Scholar 

  • Kurihara T, Westenskow PD, Bravo S et al (2012) Targeted deletion of Vegfa in adult mice induces vision loss. J Clin Invest 122:4213–4217

    Article  CAS  Google Scholar 

  • Kurihara T, Westenskow PD, Gantner ML et al (2016) Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration. elife 5:pii:e14319

    Google Scholar 

  • Kvanta A, Algvere PV, Berglin L et al (1996) Subfoveal fibrovascular membranes in age-related macular degeneration express vascular endothelial growth factor. Invest Ophthalmol Vis Sci 37:1929–1934

    CAS  PubMed  Google Scholar 

  • Lashkari K, Hirose T, Yazdany J et al (2000) Vascular endothelial growth factor and hepatocyte growth factor levels are differentially elevated in patients with advanced retinopathy of prematurity. Am J Pathol 156:1337–1344

    Article  CAS  Google Scholar 

  • Lopez PF, Sippy BD, Lambert HM et al (1996) Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest Ophthalmol Vis Sci 37:855–868

    CAS  PubMed  Google Scholar 

  • Massacesi AL, Sacchi L, Bergamini F et al (2008) The prevalence of retinal angiomatous proliferation in age-related macular degeneration with occult choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 246:89–92

    Article  Google Scholar 

  • Ohno-Matsui K, Hirose A, Yamamoto S et al (2002) Inducible expression of vascular endothelial growth factor in adult mice causes severe proliferative retinopathy and retinal detachment. Am J Pathol 160:711–719

    Article  CAS  Google Scholar 

  • Okamoto N, Tobe T, Hackett SF et al (1997) Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol 151:281–291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scott AW, Bressler SB (2010) Retinal angiomatous proliferation or retinal anastomosis to the lesion. Eye (Lond) 24:491–496

    Article  CAS  Google Scholar 

  • Shimada H, Kawamura A, Mori R et al (2007) Clinicopathological findings of retinal angiomatous proliferation. Graefes Arch Clin Exp Ophthalmol 245:295–300

    Article  Google Scholar 

  • Slakter JS, Yannuzzi LA, Schneider U et al (2000) Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration. Ophthalmology 107:742–753. discussion 753–744

    Article  CAS  Google Scholar 

  • Solomon SD, Lindsley K, Vedula SS et al (2014) Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev: CD005139

    Google Scholar 

  • Spaide RF (2013) Clinical manifestations of choroidal neovascularization in AMD. In: Holz FG, Pauleikhoff D, Spaide RF, Bird AC (eds) Age-related macular degeneration. Springer, Berlin, Heidelberg

    Google Scholar 

  • Thiersch M, Lange C, Joly S et al (2009) Retinal neuroprotection by hypoxic preconditioning is independent of hypoxia-inducible factor-1 alpha expression in photoreceptors. Eur J Neurosci 29:2291–2302

    Article  Google Scholar 

  • Tiebel O, Oka K, Robinson K et al (1999) Mouse very low-density lipoprotein receptor (VLDLR): gene structure, tissue-specific expression and dietary and developmental regulation. Atherosclerosis 145:239–251

    Article  CAS  Google Scholar 

  • Tobe T, Okamoto N, Vinores MA et al (1998) Evolution of neovascularization in mice with overexpression of vascular endothelial growth factor in photoreceptors. Invest Ophthalmol Vis Sci 39:180–188

    CAS  PubMed  Google Scholar 

  • Vinores SA, Xiao WH, Aslam S et al (2006) Implication of the hypoxia response element of the Vegf promoter in mouse models of retinal and choroidal neovascularization, but not retinal vascular development. J Cell Physiol 206:749–758

    Article  CAS  Google Scholar 

  • Yannuzzi LA, Negrao S, Iida T et al (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21:416–434

    Article  CAS  Google Scholar 

  • Yannuzzi LA, Freund KB, Takahashi BS (2008) Review of retinal angiomatous proliferation or type 3 neovascularization. Retina 28:375–384

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Grimm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barben, M., Samardzija, M., Grimm, C. (2018). The Role of Hypoxia, Hypoxia-Inducible Factor (HIF), and VEGF in Retinal Angiomatous Proliferation. In: Ash, J., Anderson, R., LaVail, M., Bowes Rickman, C., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1074. Springer, Cham. https://doi.org/10.1007/978-3-319-75402-4_22

Download citation

Publish with us

Policies and ethics