Model Transformations as Free Constructions

  • Michael LöweEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10800)


Hartmut Ehrig was an active researcher in Algebraic Specifications on the one hand and Graph and Model Transformations on the other hand. We demonstrate that these two research fields are closely connected, if we consider generating graph transformations only and use partial algebras instead of total algebras as the underlying category.


  1. 1.
    Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories - The Joy of Cats (2004).
  2. 2.
    Anjorin, A., Leblebici, E., Schürr, A.: 20 years of triple graph grammars: a roadmap for future research. ECEASST, 73 (2015)Google Scholar
  3. 3.
    Burmeister, P.: Introduction to theory and application of partial algebras - Part I. Mathematical Research, vol. 32. Akademie-Verlag, Berlin (1986)zbMATHGoogle Scholar
  4. 4.
    Chen, P.P.: The entity-relationship model - toward a unified view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976)CrossRefGoogle Scholar
  5. 5.
    Claßen, I., Ehrig, H., Wolz, D.: Algebraic specification techniques and tools for software development: the act approach. AMAST Series in Computing, vol. 1. World Scientific, River Edge (1993)zbMATHGoogle Scholar
  6. 6.
    World Wide Web Consortium. Xml Schema, W3C (2012).
  7. 7.
    Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  8. 8.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  9. 9.
    Ehrig, H., Ermel, C., Golas, U., Hermann, F.: Graph and Model Transformation - General Framework and Applications. Springer, Monographs in Theoretical Computer Science. An EATCS Series (2015)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ehrig, H., Mahr, B.: Fundamentals of algebraic specification 1: equations and initial semantics. EATCS Monographs on Theoretical Computer Science., vol. 6. Springer, Heidelberg (1985)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ehrig, H., Mahr, B.: Fundamentals of algebraic specification 2. EATCS Monographs on Theoretical Computer Science, vol. 21. Springer, Heidelberg (1990)CrossRefzbMATHGoogle Scholar
  12. 12.
    Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach. In: FOCS, pp. 167–180. IEEE (1973)Google Scholar
  13. 13.
    Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley, Boston (2003)Google Scholar
  14. 14.
    Object Management Group: Business Process Model and Notation 2.0.2. OMG (2013).
  15. 15.
    Object Management Group: Unified Modeling Language 2.5. OMG (2015).
  16. 16.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundam. Inform. 26(3/4), 287–313 (1996)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Program. 8(3), 231–274 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor. Comput. Sci. 109(1&2), 181–224 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
  20. 20.
    Petri, C.A., Reisig, W.: Petri net. Scholarpedia 3(4), 6477 (2008)CrossRefGoogle Scholar
  21. 21.
    Tempelmeier, M., Löwe, M.: Single-Pushout Transformation partieller Algebren. Technical Report 2015/1, FHDW-Hannover (2015) (in German)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FHDW HannoverHannoverGermany

Personalised recommendations