Integration of Graph Constraints into Graph Grammars

  • Annegret Habel
  • Christian Sandmann
  • Tilman TeuschEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10800)


We investigate the integration of graph constraints into graph grammars and consider the filter problem: Given a graph grammar and a graph constraint, does there exist a “goal-oriented” grammar that generates all graphs of the original graph language satisfying the constraint. We solve the filter problem for specific graph grammars and specific graph constraints. As an intermediate step, we construct a constraint automaton accepting exactly the graphs in the graph language that satisfy the constraint.



We are grateful to Jan Steffen Becker, Berthold Hoffmann, Jens Kosiol, Nebras Nassar, Christoph Peuser, Lina Spiekermann, and Gabriele Taentzer and the anonymous reviewers for their helpful comments to this paper.


  1. [AHRT14]
    Arendt, T., Habel, A., Radke, H., Taentzer, G.: From core OCL invariants to nested graph constraints. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 97–112. Springer, Cham (2014). Google Scholar
  2. [AJ01]
    Abdulla, P.A., Jonsson, B.: Ensuring completeness of symbolic verification methods for infinite-state systems. Theor. Comput. Sci. 256(1–2), 145–167 (2001)Google Scholar
  3. [BDK+12]
    Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decidability status of reachability and coverability in graph transformation systems. In: Rewriting Techniques and Applications (RTA 2012). LIPIcs, vol. 15, pp. 101–116 (2012)Google Scholar
  4. [Bec16]
    Becker, J.S.: An automata-theoretic approach to instance generation. In: Graph Computation Models (GCM 2016), Electronic Pre-Proceedings (2016)Google Scholar
  5. [Ber14]
    Bergmann, G.: Translating OCL to graph patterns. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 670–686. Springer, Cham (2014). Google Scholar
  6. [CCR07]
    Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of UML/OCL models using constraint programming. In: 22nd IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 547–548 (2007)Google Scholar
  7. [Din92]
    Ding, G.: Subgraphs and well-quasi-ordering. J. Graph Theor. 16(5), 489–502 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [DVH16]
    Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation by logic solvers. In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 87–103. Springer, Heidelberg (2016). CrossRefGoogle Scholar
  9. [EEPT06]
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs of Theoretical Computer Science. Springer, Heidelberg (2006). zbMATHGoogle Scholar
  10. [EHK+97]
    Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.: Algebraic approaches to graph transformation. Part II: single-pushout approach and comparison with double pushout approach. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 247–312. World Scientific, River Edge (1997)Google Scholar
  11. [HP09]
    Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems relative to nested conditions. Math. Struct. Comput. Sci. 19, 245–296 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Jac12]
    Jackson, D.: Alloy Analyzer website (2012).
  13. [KG12]
    Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 415–431. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  14. [RAB+15]
    Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essential OCL invariants to nested graph constraints focusing on set operations. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 155–170. Springer, Cham (2015). CrossRefGoogle Scholar
  15. [SLO17]
    Schneider, S., Lambers, L., Orejas, F.: Symbolic model generation for graph properties. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 226–243. Springer, Heidelberg (2017). CrossRefGoogle Scholar
  16. [Tae12]
    Taentzer, G.: Instance generation from type graphs with arbitrary multiplicities. Electron. Commun. EASST 47 (2012)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Annegret Habel
    • 1
  • Christian Sandmann
    • 1
  • Tilman Teusch
    • 1
    Email author
  1. 1.Universität OldenburgOldenburgGermany

Personalised recommendations