Advertisement

Graph Attribution Through Sub-Graphs

  • Harmen Kastenberg
  • Arend RensinkEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10800)

Abstract

We offer an alternative to the standard way of formalising attributed graphs. We propose to represent them as graphs with a marked sub-graph that represents the data domain, rather than as tuples of graph and algebra. This is a general construction which can be shown to preserve adhesiveness of categories; it has the advantage of uniformity and gives more flexibility in defining data abstractions. We show equivalence of our formalisation with the standard one, under a suitable encoding of algebras as graphs.

Notes

Acknowledgement

For the proof of adhesiveness of \(\mathbf {RMon}\), we are very grateful for help from Andrea Corradini, Tobias Heindel, and Ulrike Prange.

References

  1. 1.
    Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by partner abstraction. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 249–264. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74061-2_16 CrossRefGoogle Scholar
  2. 2.
    Boisvert, B., Féraud, L., Soloviev, S.: Typed lambda-terms in categorical attributed graph transformation. In: Durán, F., Rusu, V. (eds.) Algebraic Methods in Model-based Software Engineering (AMMSE). Electr. Notes Theor. Comput. Sci., vol. 56, pp. 33–47 (2011)Google Scholar
  3. 3.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graphs and graph transformation based on adhesive HLR categories. Fund. Inf. 74(1), 31–61 (2006)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-31188-2 zbMATHGoogle Scholar
  5. 5.
    Ehrig, H., Padberg, J., Prange, U., Habel, A.: Adhesive high-level replacement systems: a new categorical framework for graph transformation. Fund. Inf. 74(1), 1–29 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Golas, U.: A general attribution concept for models in \({\cal{M}}\)-adhesive transformation systems. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 187–202. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33654-6_13 CrossRefGoogle Scholar
  7. 7.
    Kastenberg, H.: Towards attributed graphs in GROOVE: Work in progress. In: Heckel, R., König, B., Rensink, A. (eds.) Graph Transformation for Verification and Concurrency (GT-VC). Electr. Proc. Theor. Comput. Sci., vol. 154, pp. 47–54 (2006)Google Scholar
  8. 8.
    Kastenberg, H., Rensink, A.: Graph attribution through sub-graphs. CTIT Technical report TR-CTIT-12-27, Department of Computer Science, University of Twente (2012)Google Scholar
  9. 9.
    Kehrer, T., Alshanqiti, A., Heckel, R.: Automatic inference of rule-based specifications of complex in-place model transformations. In: Guerra, E., van den Brand, M. (eds.) ICMT 2017. LNCS, vol. 10374, pp. 92–107. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-61473-1_7 CrossRefGoogle Scholar
  10. 10.
    König, B.: A general framework for types in graph rewriting. Acta Inf. 42(4–5), 349–388 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FoSSaCS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24727-2_20 CrossRefGoogle Scholar
  12. 12.
    Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symb. Comput. 46(3), 294–315 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Orejas, F., Lambers, L.: Symbolic attributed graphs for attributed graph transformation. In: Graph and Model Transformation (GraMoT). Electr. Comm. of the EASST., vol. 30 (2010)Google Scholar
  14. 14.
    Peuser, C., Habel, A.: Composition of \(m, n\)-adhesive categories with application to attribution of graphs. In: Plump, D. (ed.) Graph Computation Models (GCM). Electr. Comm. of the EASST, vol. 73 (2015)Google Scholar
  15. 15.
    Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 128–143. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30203-2_11 CrossRefGoogle Scholar
  16. 16.
    Rensink, A.: Canonical graph shapes. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 401–415. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24725-8_28 CrossRefGoogle Scholar
  17. 17.
    Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-25959-6_40 CrossRefGoogle Scholar
  18. 18.
    Rensink, A., Distefano, D.: Abstract graph transformation. Electr. Notes Theor. Comput. Sci. 157(1), 39–59 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations