Overview of Reconfigurable Petri Nets

  • Julia PadbergEmail author
  • Laid Kahloul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10800)


The evolution in software and hardware systems from classical systems with rigid structures to open, dynamic, and flexible structures has inspired the extension of Petri nets to reconfiguration. The idea of reconfiguring Petri nets was launched in the early nineties and since then has been developed by several researchers at different levels of formalization. Researchers in this field have achieved a large amount of theoretical results and of practical applications. The aim of this paper is to present an overview of reconfigurable Petri nets dealing with several aspects including: the fundamental, theoretical basis, application domains, results at the verification/analysis level as well as practical tools. The paper finally discusses some future research directions.


Reconfigurable Petri nets Petri net transformations Dynamic infrastructures 


  1. 1.
  2. 2.
    Badouel, E., Llorens, M., Oliver, J.: Modeling concurrent systems: reconfigurable nets. In: Arabnia, H.R., Mun, Y. (eds.) International Conference on Parallel and Distributed Processing Techniques and Applications, pp. 1568–1574 (2003)Google Scholar
  3. 3.
    Badouel, E., Oliver, J.: Reconfigurable Nets, a Class of High Level Petri Nets Supporting Dynamic Changes within Workflow Systems. Research Report RR-3339. INRIA (1998)Google Scholar
  4. 4.
    Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and behaviour-preserving reconfigurations of open Petri nets. Log. Methods comput. Sci. 4, 126–142 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bause, F., Kritzinger, P.S.: Stochastic Petri Nets: An Introduction to the Theory. Vieweg+Teubner Verlag, Cape Town (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Biermann, E., Ermel, C., Hermann, F., Modica, T.: A visual editor for reconfigurable object nets based on the ECLIPSE graphical editor framework. In: 14th Workshop on Algorithms and Tools for Petri Nets (2007)Google Scholar
  8. 8.
    Biermann, E., Modica, T.: Independence analysis of firing and rule-based net transformations in reconfigurable object nets. Electron. Commun. EASST 10, 1–13 (2008)CrossRefGoogle Scholar
  9. 9.
    Bottoni, P., Hoffmann, K., Parisi-Presicce, F., Taentzer, G.: High-level replacement units and their termination properties. J. Vis. Lang. Comput. 16(6), 485–507 (2005)CrossRefGoogle Scholar
  10. 10.
    Bottoni, P., Rosa, F.D., Hoffmann, K., Mecella, M.: Applying algebraic approaches for modeling workflows and their transformations in mobile networks. Mob. Inf. Syst. 2(1), 51–76 (2006)Google Scholar
  11. 11.
    Bruni, R., Melgratti, H., Montanari, U.: Extending the zero-safe approach to coloured, reconfigurable and dynamic nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 291–327. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  12. 12.
    Bruni, R., Montanari, U.: Transactions and zero-safe nets. In: Ehrig, H., Padberg, J., Juhás, G., Rozenberg, G. (eds.) Unifying Petri Nets. LNCS, vol. 2128, pp. 380–426. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  13. 13.
    Capra, L.: A pure SPEC-inscribed PN model for reconfigurable systems. In: 2016 13th International Workshop on Discrete Event Systems (WODES), pp. 459–465, May 2016Google Scholar
  14. 14.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: Maude: specification and programming in rewriting logic. Theor. Comput. Sci. 285(2), 187–243 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ding, Z., Zhou, Y., Zhou, M.: Modeling self-adaptive software systems with learning Petri nets. IEEE Trans. Syst. Man Cybern. Syst. 46(4), 483–498 (2016)CrossRefGoogle Scholar
  16. 16.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. EATCS Monographs in TCS. Springer, Heidelberg (2006). zbMATHGoogle Scholar
  17. 17.
    Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: \(\cal{M}\)-adhesive transformation systems with nested application conditions. part 2: embedding, critical pairs and local confluence. Fundam. Inform. 118(1–2), 35–63 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of Net Transformations and Token Firing in Reconfigurable Place/Transition Systems. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 104–123. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  19. 19.
    Ehrig, H., Padberg, J.: Graph grammars and Petri net transformations. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 496–536. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  20. 20.
    Ehrig, H., Padberg, J., Ribeiro, L.: Algebraic high-level nets: Petri nets revisited. In: Ehrig, H., Orejas, F. (eds.) ADT/COMPASS -1992. LNCS, vol. 785. Springer, Heidelberg (1994). CrossRefGoogle Scholar
  21. 21.
    Gabriel, K., Ehrig, H.: Modelling of communication platforms using algebraic high-level nets and their processes. In: Heisel, M. (ed.) Software Service and Application Engineering. LNCS, vol. 7365, pp. 10–25. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  22. 22.
    Gabriel, K., Lingnau, P., Ermel, C.: Algebraic approach to timed Petri nets. Electron. Commun. EASST 47, 1–14 (2012)Google Scholar
  23. 23.
    Golas, U., Hoffmann, K., Ehrig, H., Rein, A., Padberg, J.: Functorial analysis of algebraic higher-order net systems with applications to mobile ad-hoc networks. ECEASST 40, 1–24 (2010)Google Scholar
  24. 24.
    Gottmann, S., Nachtigall, N., Hoffmann, K.: On modelling communication in ubiquitous computing systems using algebraic higher order nets. ECEASST 51, 1–12 (2012)Google Scholar
  25. 25.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundam. Inform. 26(3/4), 287–313 (1996)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Haddad, S., Poitrenaud, D.: Recursive Petri nets. Acta Informatica 44(7), 463–508 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hoff, C.: Transformationseinheiten als Kontrollstruktur für rekonfigurierbare Petrinetze in ReConNet. Master’s thesis, University of Applied Sciences Hamburg (2016)Google Scholar
  28. 28.
    Hoffmann, K., Ehrig, H., Mossakowski, T.: High-level nets with nets and rules as tokens. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 268–288. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  29. 29.
    Hoffmann, K., Ehrig, H., Padberg, J.: Flexible modeling of emergency scenarios using reconfigurable systems. ECEASST 12, 1–20 (2008)Google Scholar
  30. 30.
    Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of Concurrent Systems. Springer, Heidelberg (2009). CrossRefzbMATHGoogle Scholar
  31. 31.
    Kahloul, L., Bourekkache, S.: Djouani, K: Designing reconfigurable manufacturing systems using reconfigurable object Petri nets. Int. J. Comput. Integr. Manuf. 29, 1–18 (2016)CrossRefGoogle Scholar
  32. 32.
    Kahloul, L., Bourekkache, S., Djouani, K., Chaoui, A., Kazar, O.: Using high level Petri nets in the modelling, simulation and verification of reconfigurable manufacturing systems. Int. J. Softw. Eng. Knowl. Eng. 24(03), 419–443 (2014)CrossRefGoogle Scholar
  33. 33.
    Kahloul, L., Chaoui, A., Djouani, K., Bourekkache, S., Kazar, O.: Using high level nets for the design of reconfigurable manufacturing systems. In: 1st International Workshop on Petri Nets for Adaptive Discrete-Event Control Systems, pp. 1–19 (2014)Google Scholar
  34. 34.
    Kahloul, L., Djouani, K., Chaoui, A.: Formal study of reconfigurable manufacturing systems: a high level Petri nets based approach. In: Mařík, V., Lastra, J.L.M., Skobelev, P. (eds.) HoloMAS 2013. LNCS (LNAI), vol. 8062, pp. 106–117. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  35. 35.
    Kheldoun, A., Barkaoui, K., Zhang, J.F., Ioualalen, M.: A high level net for modeling and analysis reconfigurable discrete event control systems. In: Amine, A., Bellatreche, L., Elberrichi, Z., Neuhold, E.J., Wrembel, R. (eds.) CIIA 2015. IAICT, vol. 456, pp. 551–562. Springer, Cham (2015). CrossRefGoogle Scholar
  36. 36.
    Kheldoun, A., Zhang, J., Barkaoui, K., Ioualalen, M.: A high-level nets based approach for reconfigurations of distributed control systems. In: ADECS Petri Nets, pp. 36–51 (2014)Google Scholar
  37. 37.
    König, B., Nolte, D., Padberg, J., Rensink, A.: A tutorial on graph transformation. In: Festschrift in Memory of Hartmut Ehrig. Springer (2018, accepted)Google Scholar
  38. 38.
    Kondratyev, A., Cortadella, J., Kishinevsky, M., Lavagno, L., Taubin, A.: The use of Petri nets for the design and verification of asynchronous circuits and systems. J. Circuits Syst. Comput. 8(1), 67–118 (1998)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Koren, Y., Shpitalni, M.: Design of reconfigurable manufacturing systems. J. Manuf. Syst. 29(4), 130–141 (2010)CrossRefGoogle Scholar
  40. 40.
    Kreowski, H.-J., Kuske, S., Rozenberg, G.: Graph transformation units – an overview. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 57–75. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  41. 41.
    Li, J., Dai, X., Meng, Z.: Improved net rewriting systems-based rapid reconfiguration of Petri net logic controllers. In: 31st 2005 Annual Conference of IEEE Industrial Electronics Society, 6 pp. IEEE (2005)Google Scholar
  42. 42.
    Li, J., Dai, X., Meng, Z.: Improved net rewriting system-based approach to model reconfiguration of reconfigurable manufacturing systems. Int. J. Adv. Manuf. Technol. 37(11–12), 1168–1189 (2008)CrossRefGoogle Scholar
  43. 43.
    Li, J., Dai, X., Meng, Z.: Automatic reconfiguration of Petri net controllers for reconfigurable manufacturing systems with an improved net rewriting system-based approach. IEEE Trans. Autom. Sci. Eng. 6(1), 156–167 (2009)CrossRefGoogle Scholar
  44. 44.
    Li, J., Dai, X., Meng, Z., Xu, L.: Improved net rewriting system-extended Petri net supporting dynamic changes. J. Circuits Syst. Comput. 17(06), 1027–1052 (2008)CrossRefGoogle Scholar
  45. 45.
    Llorens, M., Oliver, J.: Structural and dynamic changes in concurrent systems: reconfigurable Petri nets. IEEE Trans. Comput. 53(9), 1147–1158 (2004)CrossRefGoogle Scholar
  46. 46.
    Llorens, M., Oliver, J.: MCReNet: a tool for marked-controlled reconfigurable nets. In: International Conference on Quantitative Evaluation of Systems, pp. 255–256 (2005)Google Scholar
  47. 47.
    Llorens, M., Oliver, J.: A basic tool for the modeling of marked-controlled reconfigurable Petri nets. ECEASST 2, 1–13 (2006)Google Scholar
  48. 48.
    Marsan, M.A.: Stochastic Petri nets: an elementary introduction. In: Rozenberg, G. (ed.) APN 1988. LNCS, vol. 424, pp. 1–29. Springer, Heidelberg (1990). CrossRefGoogle Scholar
  49. 49.
    MCReNet. Accessed 14 May 2017
  50. 50.
    Meng, X.: Modeling of reconfigurable manufacturing systems based on colored timed object-oriented Petri nets. J. Manuf. Syst. 29(2–3), 81–90 (2010)CrossRefGoogle Scholar
  51. 51.
    Modica, T., Gabriel, K., Hoffmann, K.: Formalization of Petri nets with individual tokens as basis for DPO net transformations. ECEASST 40, 1–21 (2010)Google Scholar
  52. 52.
    Modica, T., Homann, K.: Formal modeling of communication platforms using reconfigurable algebraic high-level nets. ECEASST 30, 1–24 (2010)Google Scholar
  53. 53.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  54. 54.
    Padberg, J.: Algebreic high-level net transformation systems: a survey over theory and applications. Bull. EATCS 51, 102–110 (1993)zbMATHGoogle Scholar
  55. 55.
    Padberg, J.: Categorical approach to horizontal structuring and refinement of high-level replacement systems. Appl. Categ. Struct. 7(4), 371–403 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Padberg, J.: Classification of Petri nets using adjoint functors. In: Salomaa, A., Gheorghe, P., Rozenberg, G. (eds.) Current Trends in Theoretical Computer Science, pp. 171–179. World Scientific, Singapore (2001)Google Scholar
  57. 57.
    Padberg, J.: Abstract interleaving semantics for reconfigurable Petri nets. ECEASST 51, 1–14 (2012)Google Scholar
  58. 58.
    Padberg, J.: Reconfigurable Petri nets with transition priorities and inhibitor arcs. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 104–120. Springer, Cham (2015). CrossRefGoogle Scholar
  59. 59.
    Padberg, J., Ede, M., Oelker, G., Hoffmann, K.: Reconnet: a tool for modeling and simulating with reconfigurable place/transition nets. ECEASST 54, 1–11 (2012)Google Scholar
  60. 60.
    Padberg, J., Ehrig, H., Ribeiro, L.: Algebraic high-level net transformation systems. Math. Struct. Comput. Sci. 5(2), 217–256 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Padberg, J., Gajewsky, M., Ermel, C.: Rule-based refinement of high-level nets preserving safety properties. Sci. Comput. Program. 40(1), 97–118 (2001)CrossRefzbMATHGoogle Scholar
  62. 62.
    Padberg, J., Hoffmann, K., Ehrig, H., Modica, T., Biermann, E., Ermel, C.: Maintaining consistency in layered architectures of mobile ad-hoc networks. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 383–397. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  63. 63.
    Padberg, J., Hoffmann, K., Gajewsky, M.: Stepwise introduction and preservation of safety properties in algebraic high-level net systems. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp. 249–265. Springer, Heidelberg (2000). CrossRefGoogle Scholar
  64. 64.
    Padberg, J., Schulz, A.: Model checking reconfigurable Petri nets with maude. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 54–70. Springer, Cham (2016). CrossRefGoogle Scholar
  65. 65.
    ReConNet. Accessed 16 May 2017
  66. 66.
    Rein, A., Prange, U., Lambers, L., Hoffmann, K., Padberg, J.: Negative application conditions for reconfigurable place/transition systems. ECEASST 10, 1–14 (2008)Google Scholar
  67. 67.
    Richta, T., Janousek, V., Kocí, R.: Petri nets-based development of dynamically reconfigurable embedded systems. PNSE+ ModPE 989, 203–217 (2013)Google Scholar
  68. 68.
  69. 69.
    Tigane, S., Kahloul, L., Bourekkache, L.: Net rewriting system for GSPN: A RMS case study. In: 2016 International Conference on Advanced Aspects of Software Engineering (ICAASE), pp. 38–45. IEEE (2016)Google Scholar
  70. 70.
    Tigane, S., Kahloul, L., Bourekkache, S.: Reconfigurable stochastic Petri nets for reconfigurable manufacturing systems. In: Borangiu, T., Trentesaux, D., Thomas, A., Leitão, P., Barata Oliveira, J. (eds.) Service Orientation in Holonic and Multi-Agent Manufacturing. SCI, vol. 694, pp. 383–391. Springer, Cham (2017). CrossRefGoogle Scholar
  71. 71.
    Târnauc, B., Puiu, D., Comnac, V., Suciu, C.: Modelling a flexible manufacturing system using reconfigurable finite capacity Petri nets. In: 13th International Conference on Optimization of Electrical and Electronic Equipment, pp. 1079–1084, May 2012Google Scholar
  72. 72.
    Urbášek, M.: Preserving properties in system redesign: rule-based approach. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 442–456. Springer, Heidelberg (2003). CrossRefGoogle Scholar
  73. 73.
    Valk, R.: Petri nets as token objects. In: Desel, J., Silva, M. (eds.) ICATPN 1998. LNCS, vol. 1420, pp. 1–24. Springer, Heidelberg (1998). CrossRefGoogle Scholar
  74. 74.
    Valk, R.: Object Petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 819–848. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  75. 75.
    Van Der Aalst, W., Van Hee, K.M.: Workflow Management: Models, Methods, and Systems. MIT press, Cambridge (2004)Google Scholar
  76. 76.
    Yakovlev, A., Koelmans, A., Semenov, A., Kinniment, D.: Modelling, analysis and synthesis of asynchronous control circuits using Petri nets. Integr. VLSI J. 21(3), 143–170 (1996)CrossRefzbMATHGoogle Scholar
  77. 77.
    Yu, Z., Guo, F., Ouyang, J., Zhou, L.: Object-oriented Petri nets and \(\pi \)-calculus-based modeling and analysis of reconfigurable manufacturing systems. Adv. Mech. Eng. 8(11), 1–11 (2016). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hamburg University of Applied SciencesHamburgGermany
  2. 2.LINFI Laboratory, Computer Science DepartmentBiskra UniversityBiskraAlgeria

Personalised recommendations