Skip to main content

Decomposition Structures for Soft Constraint Evaluation Problems: An Algebraic Approach

  • Chapter
  • First Online:
Book cover Graph Transformation, Specifications, and Nets

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10800))

Abstract

(Soft) Constraint Satisfaction Problems (SCSPs) are expressive and well-studied formalisms to represent and solve constraint-satisfaction and optimization problems. A variety of algorithms to tackle them have been studied in the last 45 years, many of them based on dynamic programming. A limit of SCSPs is its lack of compositionality and, consequently, it is not possible to represent problem decompositions in the formalism itself. In this paper we introduce Soft Constraint Evaluation Problems (SCEPs), an algebraic framework, generalizing SCSPs, which allows for the compositional specification and resolution of (soft) constraint-based problems. This enables the systematic derivation of efficient dynamic programming algorithms for any such problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Width is conventionally defined as \(\max _{t \in T} \{ | X_t | \} - 1\). We drop “\(-1\)” so that it gives the actual number of parameters.

References

  1. Atserias, A., Bulatov, A., Dalmau, V.: On the power of k-consistency. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 279–290. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_26

    Chapter  Google Scholar 

  2. Bellman, R.: The theory of dynamic programming. Bull. Am. Math. Soc. 60(6), 503–516 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertelè, U., Brioschi, F.: On non-serial dynamic programming. J. Comb. Theory, Ser. A 14(2), 137–148 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blume, C., Sander Bruggink, H.J., Friedrich, M., König, B.: Treewidth, pathwidth and cospan decompositions with applications to graph-accepting tree automata. J. Vis. Lang. Comput. 24(3), 192–206 (2013)

    Article  Google Scholar 

  6. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)

    Article  Google Scholar 

  7. Buscemi, M.G., Montanari, U.: CC-Pi: a constraint-based language for specifying service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6_3

    Chapter  Google Scholar 

  8. Chiang, D., Andreas, J., Bauer, D., Hermann, K.M., Jones, B., Knight, K.: Parsing graphs with hyperedge replacement grammars. In: ACL, pp. 924–932 (2013)

    Google Scholar 

  9. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theor. Comput. Sci. 109(1–2), 49–82 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dalmau, V., Jonsson, P.: The complexity of counting homomorphisms seen from the other side. Theor. Comput. Sci. 329(1–3), 315–323 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded treewidth, and finite-variable logics. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 310–326. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46135-3_21

    Chapter  Google Scholar 

  12. Dechter, R.: Constraint Processing. Morgan Kaufmann Series. Elsevier, New York (2003)

    MATH  Google Scholar 

  13. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations und Initial Semantics. EATCS Monographs on Theoretical Computer Science, vol. 6. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-69962-7

    Book  MATH  Google Scholar 

  14. Fiore, M., Mahmoud, O.: Second-order algebraic theories. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 368–380. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_33

    Chapter  Google Scholar 

  15. Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras, (pre)sheaves and named sets. High. Order Symbol. Comput. 19(2–3), 283–304 (2006)

    Article  MATH  Google Scholar 

  16. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: UAI, pp. 201–208 (2004)

    Google Scholar 

  17. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1), 1:1–1:24 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoch, N., Montanari, U., Sammartino, M.: Dynamic programming on nominal graphs. In: GaM 2015, pp. 80–96 (2015)

    Google Scholar 

  19. Kloks, T. (ed.): Treewidth: Computations and Approximations. LNCS, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

    MATH  Google Scholar 

  20. Montanari, U.: Networks of constraints: fundamental properties and applications to picture processing. Inf. Sci. 7, 95–132 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  22. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb. Theory, Ser. B 36(1), 49–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Foundations of Artificial Intelligence, vol. 2. Elsevier, New York (2006)

    MATH  Google Scholar 

  24. Rossi, F., van Beek, P., Walsh, T.: Constraint programming. In: Handbook of Knowledge Representation, pp. 181–211 (2008)

    Google Scholar 

  25. Schiendorfer, A., Knapp, A., Steghöfer, J.-P., Anders, G., Siefert, F., Reif, W.: Partial valuation structures for qualitative soft constraints. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 115–133. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6_10

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Nicklas Hoch and Giacoma Valentina Monreale for their collaboration in an earlier version of this work. We also thank an anonymous reviewer for suggesting the example where bucket elimination does not produce a canonical term.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Sammartino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montanari, U., Sammartino, M., Tcheukam, A. (2018). Decomposition Structures for Soft Constraint Evaluation Problems: An Algebraic Approach. In: Heckel, R., Taentzer, G. (eds) Graph Transformation, Specifications, and Nets. Lecture Notes in Computer Science(), vol 10800. Springer, Cham. https://doi.org/10.1007/978-3-319-75396-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75396-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75395-9

  • Online ISBN: 978-3-319-75396-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics