Skip to main content

Damage Detection Integrating ISHM and LWSHM Techniques

  • Conference paper
  • First Online:
Special Topics in Structural Dynamics, Volume 5

Abstract

Currently, structural health monitoring (SHM) represents one of the main areas of interest in engineering, being applied both for maintenance cost reduction and operational safety. In this contribution, a hybrid SHM system is proposed as a complementary methodology for the damage diagnosis of a typical aeronautical material panel (aeronautical aluminum plate 2024-T3), through the integration of two SHM techniques, namely the electromechanical impedance technique and the Lamb waves. For the diagnosis, a damage metric extracted from the impedance signatures of the structure was used in conjunction with an algorithm for localization of the damage by considering Lamb waves. In addition, temperature compensation techniques were systematically employed to avoid false diagnoses and a statistical model was developed to establish threshold indices according to a predefined confidence level. Thus, this work presents an evaluation of the sensitivity of the proposed techniques, considering a success rate. Finally, the results show the great potential for the integration of the two techniques together with statistical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbate, A., Koay, J., Frankel, J., Schroeder, S.C.N., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44, 14–26 (1997)

    Article  Google Scholar 

  2. An, Y.K., Sohn, H.: Integrated impedance and guided wave based damage detection. Mech. Syst. Signal Process. 28, 50–62 (2012)

    Article  Google Scholar 

  3. Annamdas, V.G.M., Ian, L.S., Pang, H.L.J., Soh, C.K.: Monitoring of fatigue in welded beams using piezoelectric wafer based impedance technique. J. Nondestruct. Eval. 33(1), 124–140 (2014)

    Google Scholar 

  4. Annamdas, V.G.M., Sohn, C.K.: Application of electromechanical impedance technique for engineering structures: review and future issues. J. Intell. Mater. Sys. Struct. 21(1), 41–59 (2010)

    Article  Google Scholar 

  5. Baptista, F.G., Budoya, D.E., Almeida, V.A.D., Ulson, J.A.C.: An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring. Sensors. 14, 1208–1227 (2014)

    Article  Google Scholar 

  6. Bendat, J.S, Piersol, A.G.: Random Data – Analysis and Measurement Procedures. 4th ed. ISBN: 978–0470248775. Wiley, New York (2000)

    Google Scholar 

  7. Cavalini Jr., A.A., Oliveira, D.D., Rabelo, D.S., Finzi Neto, R.M., Steffen Jr., V.: Fault detection in a rotating shaft by using the electromechanical impedance method and a temperature compensation approach. In: Proceedings of the XXXVI Ibero-Latin American congress on computational methods in engineering (CILAMCE 2015), Rio de Janeiro (2015)

    Google Scholar 

  8. Cesnik, C.: Review of guided-wave structural health monitoring. Shock Vib. Dig. 39(2), 91–114 (2007)

    Article  Google Scholar 

  9. Dao, P.B., Staszewski, W.J.: Cointegration approach for temperature effect compensation in lamb-wave-based damage detection. Smart Mater. Struct. 22, 095002 (2013)

    Article  Google Scholar 

  10. Davis, G.D., Rich, M.J., Drzal, L.T.: Monitoring moisture uptake and delamination in CFRP reinforced concrete structures with electrochemical impedance sensors. J. Nondestruct. Eval. 23(1), 1–9 (2004)

    Article  Google Scholar 

  11. Debnath, L.: Wavelet Transforms & Their Applications. Birkhäuser Press, Boston (2001)

    MATH  Google Scholar 

  12. Farrar, C.R., Lieven, N.A.J., Benent, M.T.: An Introduction to Damage Prognosis. In: Damage Prognosis for Aerospace, Civil and Mechanical System, p. 449. Wyle, Inglaterra (2005)

    Google Scholar 

  13. Finzi Neto, R.M.: A Low-cost electromechanical impedance-based SHM architecture for multiplexed piezoceramic actuators. J. Struct. Heal. Monit. 10(4), 391--402 (2010)

    Article  Google Scholar 

  14. Harley, J., Moura, J.: Scale transform signal processing for optimal ultrasonic temperature compensation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59(10), 2226–2236 (2012)

    Article  Google Scholar 

  15. Huynh, D., He, J., Tran, D.: Damage location vector: a non-destructive structural damage detection technique. Comput. Struct. 83(28--30), 2353--2367 (2005)

    Article  Google Scholar 

  16. Incropera, F.P, Dewitt, D.P., Bergamn, T.L.: Fundamentals of Heat and Mass Transfer. Wiley edition 6, p. 272–275, California (2006)

    Google Scholar 

  17. Kijanka, P., Radecki, R., Packo, P.W., Staszewski, J., Uhl, T.: GPU-based local interaction simulation approach for simplified temperature effect modelling in Lamb wave propagation used for damage detection. Smart Mater. Struct. 22(3), 035014 (2013)

    Article  Google Scholar 

  18. Koo, K.Y., Park, S., Lee, J.J., Yun, C.B.: Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects. J. Intell. Mater. Syst. Struct. 20(4), 367–377 (2009)

    Article  Google Scholar 

  19. Krishnamurthy, K., Lalande, F.; Rogers, C. A.: Effects of temperature on the electrical impedance of piezoelectric sensors. In: Proceedings of SPIE 2717, Smart Structures and Materials 1996: Smart Structures and Integrated Systems, 302 (mai. 1996); San Diego (1996). doi: https://doi.org/10.1117/12.239033

  20. Lemistre, M., Gouyon, R., Kaczmarek, H., Balageas, D.: Damage localization in composite plates using wavelet transform processing on lamb wave signals, Second International Workshop on Structural Health Monitoring, Stanford (1999)

    Google Scholar 

  21. Liang, C., Sun, F.P., Rogers, C.A.: Coupled electromechanical analysis of adaptive material system – determination of actuator power consumption and system energy transfer. J. Intell. Mater. Syst. Struct. 5, 21–20 (1994)

    Google Scholar 

  22. Lind, R., Kyle, S., Brenner, M.: Wavelet analysis to characterize non-linearities and predict limit cycles of an aeroelastic system. Mech. Syst. Signal Process. 15, 337–356 (2001)

    Article  Google Scholar 

  23. Liu, G., Xiao, Y., Zhang, H., Ren, G.: Baseline signal reconstruction for temperature compensation in Lamb wave based, damage detection. Sensors. 16(8), 1273 (2016)

    Article  Google Scholar 

  24. Lu, Y., Ye, L., Wang, D., Zhong, Z., Herszberg, I.: Damage detection in a large composite panel of five stiffeners using lamb wave signals. Mater. Forum. 33, 16 (2009)

    Google Scholar 

  25. Marzani, A., Salamone, S.: Numerical prediction and experimental verification of temperature effect on plate waves generated and received by piezoceramic sensors. Mech. Syst. Signal Process. 30, 204–217 (2012)

    Article  Google Scholar 

  26. Monnier, T.: Lamb waves-based impact damage monitoring of a stiffened aircraft panel using piezoelectric transducers. J. Intell. Mater. Syst. Struct. 17(5), 411–421 (2006)

    Article  Google Scholar 

  27. Moura Jr., J.R.V.: Uma Contribuição aos Sistemas de Monitoramento de Integridade Estrutural Aplicada a Estruturas Aeronáuticas e Espaciais. 264f. Tese de Doutorado – Universidade Federal de Uberlândia, Uberlândia (2008)

    Google Scholar 

  28. Moura Jr., J.R.V., Steffen Jr., V.: Impedance-based health monitoring for aeronautic structures using statistical meta-modeling. J. Intell. Mater. Syst. Struct. 17(11), 1023–1036 (2006)

    Article  Google Scholar 

  29. Overly, T., Jacobs, L.D., Farinholt, K., Park, G., Farrar, C.R., Flynn, E., Todd, M.D.: Developing an integrated software solution for active-sensing SHM. Smart Struct. Syst. 5(4), 457–468 (2009)

    Article  Google Scholar 

  30. Palomino, L.V.; Steffen Jr., V.: Damage metrics associated with electromechanical impedance technique for SHM applied to a riveted structure. In: Proceedings of the 20th International Congress of Mechanical Engineering – COBEM2009. Porto Alegre (2009)

    Google Scholar 

  31. Palomino, L.V., Tsuruta, K.M., Moura Jr., J.R.V., Rade, D.A., Steffen Jr., V., Inman, D.J.: Evaluation of the influence of sensor geometry and physical parameters on impedance-based structural health monitoring. Shock. Vib. 19, 811–823 (2012)

    Article  Google Scholar 

  32. Palomino, L.V., Steffen Jr., V., Finzi Neto, R.M.: Probabilistic neural network and fuzzy cluster analysis methods applied to impedance-based SHM for damage classification. Shock. Vib, vol. Article ID 401942 1--12 (2014)

    Google Scholar 

  33. Park, C.Y.: Damage index comparison for a composite stiffened panel using lamb wave. Adv. Mater. Res. 26–28, 1265–1268 (2007)

    Article  Google Scholar 

  34. Park, G., Cudney, H., Inman, D.J.: Based structural health monitoring using a miniaturized impedance measuring chip for corrosion detection. Am. Soc. Nondestruct. Test. Pesqui. Nondestruct. Eval. 18, 139–150 (2007)

    Google Scholar 

  35. Park, G., Cudney, H., Inman, D.J.: Feasibility of using impedance-based damage assessment for pipeline systems. Earthq. Eng. Struct. Dyn. J. 30(10), 1463–1474 (2001)

    Article  Google Scholar 

  36. Park, G., Inman, D.J.: Smart bolts: an example of self-healing structures. Smart Mater. Bouletin. 5--8 (2001)

    Google Scholar 

  37. Park, G., Kabeya, K., Cudney, H.H., Inman, D.J.: Impedance-based structural health monitoring for temperature varying applications. JSME Int. J. 42(2), 249–258 (1999)

    Article  Google Scholar 

  38. Park, S., Lee, J.-J., Yun, C.-B., Inman, D.J.: Electro-mechanical impedance-based wireless structural health monitoring using PCA-data compression and k-means clustering algorithms monitoring and path forward. J. Intell. Mater. Syst. Struct. 19, 509–520 (2008)

    Article  Google Scholar 

  39. Rabelo, D. S.; Finzi Neto, R. M.; Steffen Jr., V.: Impedance-based Structural Health Monitoring incorporating compensation of temperature variation effects. In: Proceedings of the 23rd ABCM International Congress of Mechanical Engineering. Rio de Janeiro (2015b)

    Google Scholar 

  40. Rabelo, D.S, Guimarães, C.G., Cavalini Jr., A.A, Steffen Jr., V.: A comparative study of temperature compensation techniques for impedance-based structural health monitoring systems In: Proceedings of the 1st Workshop in Industrial Mathematics, Modelling and Optimization. Catalão (2015c)

    Google Scholar 

  41. Rabelo, D.S, Steffen Jr., V, Finzi Neto, R.M, Lacerda, H.B.: Impedance-based structural health monitoring and statistical method for threshold-level determination applied to 2024-T3 aluminum panels under varying temperature, Structural Health Monitoring, Online First, (2016). doi:https://doi.org/10.1177/1475921716671038

    Article  Google Scholar 

  42. Raghavan, A., Cesnik, C.E.S.: Lamb-Wave Based Structural Health Monitoring. Damage Prognosis for Aerospace, Civil and Mechanical System, Wiley, Cap. 11, pp. 235–274 (2005)

    Chapter  Google Scholar 

  43. Raju, V.: Implementing Impedance-based Health Monitoring. Dissertation, Virginia Tech (1997)

    Google Scholar 

  44. Ramadas, C., Balasubramaniam, K., Joshi, M., Krishnamurthy, C.V.: Interaction of Lamb mode (A0) with Structural Discontinuity and Generation of “Turning modes” in a T-joint. Elsevier. (2011)

    Article  Google Scholar 

  45. Rizzo, P., Di Scalea, F.L.: Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring. Smart Struct. Syst. 2(3), 253–274 (2006)

    Article  Google Scholar 

  46. Rocha, L.A.A, Rabelo, D.S., Steffen Jr., V.: Identification of Damage in Structures with Rivets using Impedance techniques and controls of Lamb waves, CONEM 2014 no. 0503 (2014)

    Google Scholar 

  47. Roy, S., Lonkar, K., Janapati, V., Chang, F.K.: A novel physics-based temperature compensation model for structural health monitoring using ultrasonic guided waves. Struct. Health Monit. (2014). https://doi.org/10.1177/1475921714522846

  48. Salas, K.I, Cesnik, C.E.S.: Design and Characterization of the CLoVER transducer for structural health monitoring. In: Proceedings of the 15th SPIE Symposium on Smart Structures and Materials & Nondestructive Testing and Health Monitoring, March 2008, Paper #6935–11, San Diego (2008)

    Google Scholar 

  49. Sohn, H.: Statistical Pattern Recognition Paradigm Applied to Defect Detection in Composite Plates in Damage Prognosis – for Aerospace, Civil and Mechanical Systems. Wiley, Hoboken (2005)

    Google Scholar 

  50. Sorohan, S., Constantin, N., Gavan, M., Anghel, V.: Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes. Ultrasonics. 51, 503--515 (2011)

    Article  Google Scholar 

  51. Su, Z., Ye, L., Lu, Y.: Guided lamb waves for identification of damage in composite structures: a review. J. Sound Vib. 295, 753–780 (2006)

    Article  Google Scholar 

  52. Su, Z., Ye, L.: Identification of Damage Using Lamb Waves from Fundamentals to Applications, Springer, e-ISBN:978-1-84882-784-4, (2009)

    Chapter  Google Scholar 

  53. Su, Z., Ye, L.: Lamb wave-based quantitative identification of delamination in CF/EP composite structures using artificial neural algorithm. Compos. Struct. 66, 627--637 (2004)

    Article  Google Scholar 

  54. Sun, F.P., Chaudhry, Z., Liang, C., Rogers, C.A.: Truss structure integrity identification using PZT sensor–actuator. J. Intell. Mater. Syst. Struct. 6, 134–139 (1995)

    Article  Google Scholar 

  55. Wang, C.S, Chang, F.K.: Diagnosis of Impact Damage in Composite Structures with built-in piezoelectric networks. In: Proceedings of SPIE, vol. 3990, pp. 13–19 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Altamirando de Andrade da Rocha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Andrade da Rocha, L.A., Neto, R.M.F., Steffen, V. (2019). Damage Detection Integrating ISHM and LWSHM Techniques. In: Dervilis, N. (eds) Special Topics in Structural Dynamics, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-75390-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75390-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75389-8

  • Online ISBN: 978-3-319-75390-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics