Skip to main content

Food Intake and Physiological Regulation: The Means and the End

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Eating and Drinking
  • 1 Accesses

Abstract

The notion of regulation is key to the understanding of body weight control. The independent life of animals requires the active regulation of many critical parameters of the internal status of the organism, i.e., their maintenance within a narrow range of defended values. Food intake is not one of such parameters. Food intake is one of many effector mechanisms that contribute to the regulation of several internal parameters, such as glycemia and adipose stores. The science of the last century has clarified the fine machinery of regulatory processes. Beyond the early notion of feedback loops triggering regulatory responses to existing need states, it is now recognized that efficient regulation rests on learned anticipatory responses, both physiological and behavioral, that are highly plastic and continuously shaped by the experience of environmental conditions. In humans, a wide range of factors (genetic, psychological, sociocultural, environmental, etc.) exert a significant influence on eating patterns. In spite of the massive influence of environmental and social factors, regulatory adjustments can be detected in the food intake of humans, including persons with obesity. Impressive developments in knowledge have paralleled an unprecedented worldwide increase in the frequency of obesity. In this field, knowledge does not equate power. Even in the present obesogenic world, however, food intake matches energy needs perfectly in many individuals with healthy weight. Understanding why regulation mechanisms allow body adiposity to drift upward in so many others remains a crucial challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Begum, S., Hinton, E. C., Toumpakari, Z., Frayling, T. M., Howe, L., Johnson, L., & Lawrence, N. (2023). Mediation and moderation of genetic risk of obesity through eating behaviours in two UK cohorts. International Journal of Epidemiology, dyad092. https://doi.org/10.1093/ije/dyad092

  • Bellisle, F. (2014). Meals and snacking, diet quality and energy balance. Physiology & Behavior, 134, 38–43.

    Article  Google Scholar 

  • Bernard, C. (1879). Leçons sur les phénomènes de la vie. Baillère.

    Google Scholar 

  • Berridge, K. C., Ho, C. Y., Richard, J. M., & DiFeliciantonio, A. G. (2010). The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders. Brain Research, 1350, 43–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berthoud, H. R. (2011). Metabolic and hedonic drives in the neural control of appetite: Who is the boss? Current Opinion in Neurobiology, 21, 888–896.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berthoud, H. R., Munzberg, H., & Morrison, C. D. (2017). Blaming the brain for obesity: Integration of hedonic and homeostatic mechanisms. Gastroenterology, 152, 1728–1738.

    Article  PubMed  Google Scholar 

  • Blundell, J. E., de Graaf, C., Hulshof, T., Jebb, S., Livingstone, B., Lluch, A., et al. (2010). Appetite control: Methodological aspects of the evaluation of foods. Obesity Reviews, 11, 251–270.

    Article  PubMed  PubMed Central  Google Scholar 

  • Booth, D. A. (1977). Satiety and appetite are conditioned reactions. Psychosomatic Medicine, 39, 76–81.

    Article  PubMed  Google Scholar 

  • Brobeck, J. R. (1948). Food intake as a mechanism of temperature regulation. Yale Journal of Biology and Medicine, 20, 545–552.

    PubMed  PubMed Central  Google Scholar 

  • Caballero, B. (2019). Humans against obesity: Who will win? Advances in Nutrition, 10, S4–S9. https://doi.org/10.1093/advances/nmy055

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon, W. B. (1932). The wisdom of the body (pp. 177–201). W. W. Norton.

    Google Scholar 

  • Champagne, C. M., Han, H., Bajpeyi, S., Rood, J., Johnson, W. D., Lammi-Keefe, C. J., et al. (2013). Day-to-day variation in food intake and energy expenditure in healthy women: The dietitian II study. Journal of the Academy of Nutrition and Dietetics, 113, 1532–1538.

    Article  PubMed  Google Scholar 

  • Chapelot, D., Marmonier, C., Aubert, R., et al. (2004). A role for glucose and insulin preprandial profiles to differentiate meals and snacks. Physiology & Behavior, 80, 721–731.

    Article  Google Scholar 

  • Cornil, Y., & Chandon, P. (2015). Pleasure as an ally of healthy eating? Contrasting visceral and Epicurean eating pleasure and their association with portion size preferences and wellbeing. Appetite, 104, 52–59. https://doi.org/10.1016/j.appet.2015.08.045

    Article  PubMed  Google Scholar 

  • De Castro, J. M. (1988). A microregulatory analysis of spontaneous fluid intake by humans: Evidence that the amount of liquid ingested and its timing is mainly governed by feeding. Physiology & Behavior, 43, 705–714.

    Article  Google Scholar 

  • De Castro, J. M. (1994). Methodology, correlational analysis, and interpretation of diet diary records of the food and fluid intakes of free-living humans. Appetite, 23, 179–192.

    Article  PubMed  Google Scholar 

  • De Castro, J. M. (1998). Prior day’s intake has macronutrient-specific delayed negative feedback effects on the spontaneous food intake of free-living humans. Journal of Nutrition, 128, 61–67.

    Article  PubMed  Google Scholar 

  • De Castro, J. M. (2010). The control of food intake of free-living humans: Putting the pieces back together. Plysiology & Behavior, 100, 446–453.

    Article  Google Scholar 

  • De Castro, J. M., & Brewer, E. M. (1992). The amount eaten by humans is a power function of the number of people present. Physiology & Behavior, 51, 121–125.

    Article  Google Scholar 

  • De Castro, J. M., & Elmore, D. K. (1988). Subjective hunger relationship with meal patterns in the spontaneous feeding behavior of humans: Evidence for a causal connection. Physiology & Behavior, 43, 159–165.

    Article  Google Scholar 

  • De Castro, J. M., & Plunkett, S. (2002). A general model of intake regulation. Neuroscience & Biobehavioral Reviews, 26, 581–595.

    Article  Google Scholar 

  • Edholm, O. G., Fletcher, J. G., Widdowson, E. M., & McCance, R. A. (1955). The energy expenditure and food intake of individual men. British Journal of Nutrition, 9, 286–300.

    Article  PubMed  Google Scholar 

  • Hall, K. D., Sacks, G., Chandramohan, D., Chow, C. C., Wang, Y. C., Gortmaker, S. L., et al. (2011). Quantification of the effect of energy imbalance on bodyweight. Lancet, 378, 826–837.

    Article  PubMed  Google Scholar 

  • Hall, K. D., Heymsfield, S. B., Kemnitz, J. W., Klein, S., Schoeller, D. A., & Speakman, J. R. (2012). Energy balance and its components: Implications for body weight regulation. American Journal of Clinical Nutrition, 95, 989–994.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herman, P. (2015). The social facilitation of eating. A review. Appetite, 86, 61–73.

    Article  PubMed  Google Scholar 

  • Higgs, S., & Spetter, M. S. (2018). Cognitive control of eating: The role of memory in appetite and weight gain. Current Obesity Reports, 7, 50–59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoebel, B. G., & Teitelbaum, P. (1966). Hypothalamic control of feeding and self-stimulation. Science, 149, 452–453.

    Article  Google Scholar 

  • Iwatsuki, K., Ichikawa, R., Uematsu, A., Kitamura, A., Uneyama, H., & Torii, K. (2011). Detecting sweet and umami tastes in the gastrointestinal tract. Acta Physiologica, 204, 169–177. https://doi.org/10.1111/j.1748-1716.2011.02353.x

    Article  PubMed  Google Scholar 

  • Kahneman, D., Schkade, D. A., Fischler, C., Krueger, A. B., & Krilla, A. (2010). The structure of well-being in two cities: Life satisfaction and experienced happiness in Columbus, Ohio; and Rennes, France. In E. Diener, J. F. Helliwell, & D. Kahneman (Eds.), International differences in well-being (pp. 16–33). Oxford University Press.

    Chapter  Google Scholar 

  • Kennedy, G. C. (1953). The role of depot fat in the hypothalamic control of food intake in the rat. Proceedings of the Royal Society, B137, 578–592.

    Google Scholar 

  • Langhans, W. (1996). Metabolic and glucostatic control of feeding. Proceedings of the Nutrition Society, 55, 497–515.

    Article  PubMed  Google Scholar 

  • Le Magnen, J. (1971). Advances I studies of the physiological control and regulation of food intake. In E. Stellar & J. M. Sprague (Eds.), Progress in physiological psychology (Vol. 4, pp. 204–261). Academic Press.

    Google Scholar 

  • Le Magnen, J. (1992). Neurobiology of feeding and nutrition. Academic.

    Google Scholar 

  • Mayer, J. (1953). Glucostatic mechanisms of regulation of food intake. New England Journal of Medicine, 249, 13–16.

    Article  PubMed  Google Scholar 

  • McKiernan, F., Hollis, J. H., & Mattes, R. D. (2008a). Short-term dietary compensation in free-living adults. Physiology & Behavior, 18, 975–983.

    Article  Google Scholar 

  • McKiernan, F., Houchins, J. A., & Mattes, R. D. (2008b). Relationships between human thirst, hunger, drinking, and feeding. Physiology & Behavior, 94, 700–708.

    Article  Google Scholar 

  • McKiernan, F., Hollis, J. H., McCabe, G., & Mattes, R. D. (2009). Thirst-drinking, hunger-eating; tight coupling? Journal of the American Dietetic Association, 109, 486–490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavela, G., Allison, D. B., & Cardel, M. I. (2019). A sweeping highlight of the literature examining social status, eating behavior, and obesity. Appetite, 132, 205–207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pavlov, I. (1927). Conditioned reflexes. An investigation of the physiological activity of the cerebral cortex. Oxford University Press.

    Google Scholar 

  • Pedersen, M. M., Ekstrøm, C. T., & Sørensen, T. I. A. (2023). Emergence of the obesity epidemic preceding the presumed obesogenic transformation of the society. Science Advances, 9. https://doi.org/10.1126/sciadv.adg6237

  • Pepino, M. Y., & Mennella, J. A. (2012). Habituation to the pleasure elicited by sweetness in lean and obese women. Appetite, 58, 800–805.

    Article  PubMed  PubMed Central  Google Scholar 

  • Powley, T. L. (1977). The ventromedial hypothalamic syndrome, satiety, and a cephalic phase hypothesis. Psychology Review, 84, 89–126.

    Article  Google Scholar 

  • Powley, T. L., & Keesey, R. E. (1970). Relationship of body weight to the lateral hypothalamic feeding syndrome. Journal of Comparative Physiological Psychology, 70, 25–36.

    Article  PubMed  Google Scholar 

  • Ramsay, D. S., & Woods, S. C. (2016). Physiological regulation: How it really works. Cell Metabolism, 24, 361–364.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodgers, A., Woodward, A., Swinburn, B., & Dietz, W. H. (2018). Prevalence trends tell US what did not precipitate the US obesity epidemic. The Lancet, 3, e162–e163.

    PubMed  Google Scholar 

  • Rogers, P. J., & Brunstrom, J. M. (2016). Appetite and energy balancing. Physiology & Behavior, 164, 465–471.

    Article  Google Scholar 

  • Rolls, B. J., & Hetherington, M. (1989). The role of variety in eating and body weight. In R. Shepherd (Ed.), Psychobiology of human eating and nutritional behavior (pp. 58–84). Wiley.

    Google Scholar 

  • Sclafani, A. (2018). From appetite set point to appetition: 50 years of ingestive behavior research. Physiology & Behavior, 192, 210–217.

    Article  Google Scholar 

  • Somjen, G. G. (1992). The missing error signal: Regulation beyond negative feedback. News in Physiological Science, 7, 184–185.

    Google Scholar 

  • Sørensen, T. I. A. (2009). Challenges in the study of causation of obesity. Proceedings of the Nutrition Society, 68, 43–54. https://doi.org/10.1017/S0029665108008847

    Article  PubMed  Google Scholar 

  • Speakman, J. R. (2007). A nonadaptative scenario explaining the genetic predisposition to obesity: The ‘predation release’ hypothesis. Cell Metabolism, 6, 5–12.

    Article  PubMed  Google Scholar 

  • Speakman, J. R., Levitsky, D. A., Allison, D. B., et al. (2011). Set points, settling points and some alternative models: Theoretical options to understand how genes and environments combine to regulate body adiposity. Disease Models & Mechanisms, 4, 733–745.

    Article  Google Scholar 

  • Stubbs, R., Hughes, D., Johnstone, A., Rowley, E., Reid, C., Elia, M., et al. (2000). The use of visual analogue scales to assess motivation to eat in human subjects: A review of their reliability and validity with an evaluation of new hand-held computerized systems for temporal tracking of appetite ratings. British Journal of Nutrition, 84, 405–415.

    Article  PubMed  Google Scholar 

  • Teff, K. L. (2011). How neural mediation of anticipatory and compensatory insulin release helps us tolerate food. Physiology & Behavior, 103, 44–50.

    Article  Google Scholar 

  • Thaler, J. P., Guyenet, S. J., Dorfman, M. D., & Wisse, B. E. (2013). Hypothalamic inflammation: Marker or mechanism of obesity pathogenesis? Diabetes, 62, 2629–2634.

    Article  PubMed  PubMed Central  Google Scholar 

  • Westerterp, K., & Soares, M. J. (2023). Challenges in measuring energy balance and body composition. European Journal of Clinical Nutrition, 77, 509–510. https://doi.org/10.1038/s41430-023-01286-8

    Article  PubMed  Google Scholar 

  • Woods, S. C. (2009). The control of food intake: Behavioral versus molecular perspectives. Cell Metabolism, 9, 489–498.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woods, S. C. (2013). Metabolic signals and food intake. Forty years of progress. Appetite, 71, 440–444.

    Article  PubMed  Google Scholar 

  • Woods, S. C., May-Zhang, A. A., & Begg, D. P. (2018). How and why do gastrointestinal peptides influence food intake? Physiology & Behavior, 193, 218–222.

    Article  Google Scholar 

  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, I., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.

    Article  PubMed  Google Scholar 

  • Zheng, H., Lenard, N. R., Shin, A. C., & Berthoud, H. R. (2009). Appetite control and energy balance regulation in the modern world: Reward-driven brain overrides repletion signals. International Journal of Obesity, 33, S8–S13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to France Bellisle .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bellisle, F. (2024). Food Intake and Physiological Regulation: The Means and the End. In: Meiselman, H.L. (eds) Handbook of Eating and Drinking. Springer, Cham. https://doi.org/10.1007/978-3-319-75388-1_128-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75388-1_128-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75388-1

  • Online ISBN: 978-3-319-75388-1

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Food Intake and Physiological Regulation: The Means and the End
    Published:
    20 March 2024

    DOI: https://doi.org/10.1007/978-3-319-75388-1_128-2

  2. Original

    Food Intake and Physiological Regulation: The Means and the End
    Published:
    14 March 2019

    DOI: https://doi.org/10.1007/978-3-319-75388-1_128-1