Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 441 Accesses

Abstract

Moisture is one of the main causes of pathologies in buildings and, thus, has always aroused great interest within the scientific community. This chapter presents a state of the art concerning infrared thermography (IRT) applications with focus on moisture assessment in buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asdrubali F, Baldinelli G, Bianchi F (2012) A quantitative methodology to evaluate thermal bridges in buildings. Appl Energy 97:365–373

    Article  Google Scholar 

  • ASTM-C 1060–90 (2003) Standard practice for thermographic inspection of insulation installations in envelope cavities of frame buildings. ASTM International, USA

    Google Scholar 

  • Avdelidis N, Moropoulou A (2003) Emissivity considerations in building thermography. Energy Buildings 35(7):663–667

    Article  Google Scholar 

  • Avdelidis N, Moropoulou A (2004) Applications of infrared thermography for the investigation of historic structures. J Cult Heritage 5(1):119–127

    Article  Google Scholar 

  • Avdelidis N, Moropoulou A, Theoulakis P (2003) Detection of water deposits and movement in porous materials by infrared imaging. Infrared Phys Technol 44(3):183–190

    Article  Google Scholar 

  • Bagavathiappan S, Lahiri B, Saravanan T, Jayakumar J (2013) Infrared thermography for condition monitoring—A review. Infrared Phys Technol 60:35–55

    Article  Google Scholar 

  • Balaras C, Argiriou A (2002) Infrared thermography for building diagnostics. Energy Buildings 34(2):171–183

    Article  Google Scholar 

  • Barreira E, Almeida RMSF, Delgado JMPQ (2016) Infrared thermography for assessing moisture related phenomena in building components. Constr Building Mater 110:251–269

    Article  Google Scholar 

  • Barreira E, Almeida RMSF, Ferreira JPB (2017a) Assessing the humidification process of lightweight concrete specimens through infrared thermography. Energy Procedia 132:213–218

    Article  Google Scholar 

  • Barreira E, Almeida RMSF, Moreira M (2017b) An infrared thermography passive approach to assess the effect of leakage points in buildings. Energy Buildings 140:224–235

    Article  Google Scholar 

  • Barreira E, Freitas VP (2007) Evaluation of building materials using infrared thermograph. Constr Building Mater 21(1):218–224

    Article  Google Scholar 

  • Bauer E, Freitas VP, Mustelier N, Barreira E, Freitas SS (2015) Infrared thermography—evaluation of the results reproducibility. Structural Survey 33(1):20–35

    Article  Google Scholar 

  • Bison P, Cadelano G, Capineri L, Capitani D, Casellato U, Faroldi P, Grinzato E, Ludwig N, Olmi R, Priori S, Proietti N, Rosina E, Ruggeri R, Sansonetti A, Soroldoni L, Valentini M (2011a) Limits and advantages of different techniques for testing moisture content in masonry. Mater Eval 69(1):111–116

    Google Scholar 

  • Bison P, Cadelano G, Grinzato E (2011b) Thermographic signal reconstruction with periodic temperature variation applied to moisture classification. Quant Infrared Thermography J 8(2):221–238

    Article  Google Scholar 

  • Camino MS, León FJ, Llorente A, Olivar JM (2014) Evaluation of the behaviour of brick tile masonry and mortar due to capillary rise of moisture. Mater de Construcción 64(314):020

    Google Scholar 

  • Cerdeira F, Vázquez ME, Collazo J, Granada E (2011) Applicability of infrared thermography to the study of the behaviour of stone panel as building envelopes. Energy Buildings 43:1845–1851

    Article  Google Scholar 

  • Chew M (1998) Assessing building façades using infra-red thermography. Structural Survey 16(2):81–86

    Article  Google Scholar 

  • Edis E, Flores-Colen I, Brito J (2014) Passive thermographic detection of moisture problems in façades with adhered ceramic cladding. Constr Building Mater 51:187–197

    Article  Google Scholar 

  • Edis E, Flores-Colen I, Brito J (2015) Quasi-quantitative infrared thermographic detection of moisture variation in facades with adhered ceramic cladding using principal component analysis. Building Environ 94:97–108

    Article  Google Scholar 

  • EN 13187 (1998) Thermal performance of buildings—Qualitative detection of thermal irregularities in building envelops—Infrared method. European Committee for Standardization, Belgium

    Google Scholar 

  • Freitas SS, Freitas VP, Barreira E (2014) Detection of façade plaster detachments using infrared thermography—A non-destructive technique. Construction Building Mater 70:80–87

    Article  Google Scholar 

  • Grinzato E, Cadelano G, Bison P (2010) Moisture map by IR thermography. J Modern Optics 57(18):1770–1778

    Article  Google Scholar 

  • Grinzato E, Ludwig N, Cadelano G, Bertucci M, Gargano M, Bison P (2011) Infrared thermography for moisture detection: a laboratory study and in-situ test. Mater Eval 69(1):97–104

    Google Scholar 

  • Hart J (2001) A practical guide for infra-red thermography for building surveys. BRE, UK

    Google Scholar 

  • ISO 6781 (1983) Thermal Insulation—Qualitative detection of thermal irregularities in building envelopes—Infrared method. International Organization for Standardization, Switzerland

    Google Scholar 

  • Katunsky D, Korjenic A, Katunska J, Lopusniak M, Korjenic S, Doroudiani S (2013) Analysis of thermal energy demand and saving in industrial buildings: a case study in Slovakia. Building Environ 67:138–146

    Article  Google Scholar 

  • Lai WL, Poon CS (2012) Boundary and size estimation of debonds in external wall finishes of high-rise buildings using Infrared thermography, In: Proceedings of QIRT2012—11th international conference on quantitative infrared thermography, Naples, Italy, June 2012

    Google Scholar 

  • Lerma C, Barreira E, Almeida RMSF (2018) A discussion concerning active infrared thermography in the evaluation of buildings air infiltration. Energy Buildings 168:56–66

    Article  Google Scholar 

  • Lerma J, Cabrelles M, Portalés C (2011) Multitemporal thermal analysis to detect moisture on a building façade. Construction Building Mater 25(5):2190–2197

    Article  Google Scholar 

  • Lerma C, Mas Á, Gil E, Vercher J, Peñalver MJ (2014) Pathology of building materials in historic buildings. Relationship between laboratory testing and infrared thermography. Materiales de Construcción 64(313):009

    Article  Google Scholar 

  • Maldague X (1993) Nondestructive evaluation of materials by infrared thermography. Springer-Verlag, Germany

    Book  Google Scholar 

  • Maldague X (1994) Nondestructive testing monographs and tracts. Infrared methodology and technology. Gordon and Breach Science Publishers, Switzerland

    Google Scholar 

  • Maldague X (2001) Theory and practice of infrared technology for nondestructive testing. Wiley-Interscience Publication, USA

    Google Scholar 

  • Maldague X (2002) Applications of infrared thermography in nondestructive evaluation, Research Working Paper No. G1K7P4, University of Laval, Electrical and Computing Engineering Department, Canada

    Google Scholar 

  • Menezes A, Gomes MG, Flores-Colen I (2015) In-situ assessment of physical performance and degradation analysis of rendering walls. Constr Building Mater 75:283–292

    Article  Google Scholar 

  • Paoletti D, Ambrosini D, Sfarra S, Bisegna F (2013) Preventive thermographic diagnosis of historical buildings for consolidation. J Cultural Heritage 14:116–121

    Article  Google Scholar 

  • Rajewski G, Devine G (1996) Building envelope—Infrared thermography—Preventative roof maintenance. Building Operator Association, Canada

    Google Scholar 

  • Rao P (2008) Infrared thermography and its applications to civil engineering. Indian Concrete J 82(5):41–50

    Google Scholar 

  • Rosina E, Ludwig N (1999) Optimal thermographic procedures for moisture analysis in building materials. Soc Photographic Instrumentation Eng (SPIE) 3827:22–33

    Google Scholar 

  • Sfarra S, Ibarra-Castanedo C, Tortorac M, Arrizzac L, Cerichellic G, Nardia I, Maldague X (2016) Diagnostics of wall paintings: A smart and reliable approach. J Cultural Heritage 18:229–241

    Article  Google Scholar 

  • Taylor T, Counsell J, Gill S (2013) Energy efficiency is more than skin deep: Improving construction quality control in new-build housing using thermography. Energy Buildings 66:222–231

    Article  Google Scholar 

  • Vavilov V (2014) Noise-limited thermal/infrared nondestructive testing. NDT E Int 61:16–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Barreira .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barreira, E., Almeida, R.M.S.F. (2019). Introduction. In: Infrared Thermography for Building Moisture Inspection. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-75386-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75386-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75385-0

  • Online ISBN: 978-3-319-75386-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics