Skip to main content

Nano-spectroscopy of Individual Carbon Nanotubes and Isolated Graphene Sheets

  • Chapter
  • First Online:
Confocal Raman Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 66))

  • 3364 Accesses

Abstract

The following chapter will review the resonant Raman active modes of single-walled carbon nanotubes emphasizing the diameter-dependence of the radial breathing mode and selectivity of the optical transition energies (resonance). Thermal studies of individual freestanding single-walled carbon nanotubes showed a pronounced phonon softening. The second part of the chapter is devoted to Raman imaging of graphene. This particular type of carbon nanophase has become available only recently. The first Raman signatures of few-layer to single-layer graphene flakes could be obtained and compared with scanning probe microscopy. The effect of electrical charging (doping) on the Raman features is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Bernal, Proc. Roy. Soc. A 106, 749 (1924)

    Article  ADS  Google Scholar 

  2. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  3. P. Avouris, Z. Chen, V. Perebeinos, Nat. Nano. 2, 605 (2007)

    Article  Google Scholar 

  4. S. Reich, C. Thomsen, J. Maultsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH Verlag GmbH, Weinheim, 2004)

    Google Scholar 

  5. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001)

    Book  Google Scholar 

  6. Adapted from http://en.wikipedia.org/wiki/Image:Types_of_Carbon_Nanotubes.png (2007)

  7. R.A. Jishi, L. Venkattaraman, M.S. Dresselhaus, G. Dresselhaus, Chem. Phys. Lett. 209, 77 (1993)

    Article  ADS  Google Scholar 

  8. S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, P.C. Eklund, Phys. Rev. Lett. 80, 3779 (1998)

    Article  ADS  Google Scholar 

  9. J. Kuerti, G. Kresse, H. Kuzmany, Phys. Rev. B 85, 8869 (1998)

    Article  ADS  Google Scholar 

  10. V.N. Popov, V.E.V. Doren, M. Balkanski, Phys. Rev. B 59, 8355 (1999)

    Article  ADS  Google Scholar 

  11. L. Henrard, E. Hernandez, P. Bernier, A. Rubio, Phys. Rev. B 60, 8521 (1999)

    Article  ADS  Google Scholar 

  12. V.N. Popov, L. Henrard, P. Lambin, Phys. Rev. B 72(3), 035436 (2005)

    Article  ADS  Google Scholar 

  13. C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214 (2000)

    Article  ADS  Google Scholar 

  14. O. Dubay, G. Kresse, Phys. Rev. B 67, 035401 (2003)

    Article  ADS  Google Scholar 

  15. B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science 290, 1331 (2001)

    Article  ADS  Google Scholar 

  16. O. Dubay, G. Kresse, H. Kuzmany, Phys. Rev. Lett. 88, 235506 (2002)

    Article  ADS  Google Scholar 

  17. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 103, 2555 (1999)

    Article  Google Scholar 

  18. G.S. Duesberg, I. Loa, M. Burghard, K. Syassen, S. Roth, Phys. Rev. Lett. 85, 5436 (2000)

    Article  ADS  Google Scholar 

  19. C. Fantini, A. Jorio, M. Souza, M.S. Strano, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 93, 147406 (2004)

    Article  ADS  Google Scholar 

  20. A. Jorio, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001)

    Article  ADS  Google Scholar 

  21. A. Jungen, C. Stampfer, J. Hoetzel, V. Bright, C. Hierold, Sens. Actuators, A-Phys. 130–131, 588 (2006)

    Article  Google Scholar 

  22. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H.J. Dai, Nature 395, 878 (1998)

    Article  ADS  Google Scholar 

  23. A. Jungen, V.N. Popov, C. Stampfer, L. Durrer, S. Stoll, C. Hierold, Phys. Rev. B 75, 041405 (2007)

    Article  ADS  Google Scholar 

  24. V.N. Popov, L. Henrard, P. Lambin, Phys. Rev. B 70(11), 115407 (2004)

    Article  ADS  Google Scholar 

  25. A. Jungen, S. Hofmann, J.C. Meyer, C. Stampfer, S. Roth, J. Robertson, C. Hierold, J. Micromech. Microeng. 17, 603 (2007)

    Article  ADS  Google Scholar 

  26. P. Avouris, J. Appenzeller, R. Martel, S.J. Wind, Proc. IEEE 91, 1772 (2003)

    Article  Google Scholar 

  27. A.P. Graham, G.S. Duesberg, R.V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl, W. Hoenlein, Small 1, 382 (2005)

    Article  Google Scholar 

  28. C. Stampfer, T. Helbling, D. Obergfell, B. Schoeberle, M.K. Tripp, A. Jungen, S. Roth, V.M. Bright, C. Hierold, Nano Lett. 6, 233 (2006)

    Article  ADS  Google Scholar 

  29. D. Mann, Y.K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X.R. Wang, L. Zhang, Q. Wang, J. Guo, H.J. Dai, Nat. Nano. 2, 33 (2007)

    Article  Google Scholar 

  30. A. Jungen, J. Gauckler, C. Stampfer, L. Durrer, T. Helbling, C. Hierold, in IEEE MEMS 08 (AZ, USA, Tucson, 2008), p. 733

    Google Scholar 

  31. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 61, 2981 (2000)

    Article  ADS  Google Scholar 

  32. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  33. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Science 438, 197 (2005)

    Google Scholar 

  34. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Science 438, 201 (2005)

    Google Scholar 

  35. R. Vidano, D. Fischbach, L. Willis, T. Loehr, Solid State Commun. 39, 341 (1981)

    Article  ADS  Google Scholar 

  36. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)

    Article  ADS  Google Scholar 

  37. N. Peres, F. Guinea, A.C. Neto, Phys. Rev. B 73, 125411 (2006)

    Article  ADS  Google Scholar 

  38. E.H. Hwang, S. Adam, S.D. Sarma, Phys. Rev. Lett. 98, 186806 (2007)

    Article  ADS  Google Scholar 

  39. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. von Klitzing, A. Yacoby, Nat. Phys. 4, 144 (2008)

    Article  Google Scholar 

  40. C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, L. Wirtz, Appl. Phys. Lett. 91, 187401 (2007)

    Article  Google Scholar 

  41. S. Pisana, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari, F. Mauri, Nat. Mater. 6, 198 (2007)

    Article  ADS  Google Scholar 

  42. J. Yan, Y. Zhang, P. Kim, A. Pinczuk, Phys. Rev. Lett. 98, 166802 (2007)

    Article  ADS  Google Scholar 

  43. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  44. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 7, 238 (2007)

    Article  ADS  Google Scholar 

  45. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, Nano Lett. 6, 2667 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank in particular Dr. Christoph Stampfer and Prof. Christofer Hierold. Many of the results summarized in the present chapter have been achieved with the support and collaboration of numerous people. They are (in alphabetic order) Lukas Durer, Prof. Klaus Ensslin, Dr. Davy Graf, Thomas Helbling, Dr. Stephan Hofmann, Francoise Molitor, Matthias Muoth, Dr. Jannik Meyer, Simone Pisana, Prof. Valentin Popov, Dr. Stephan Stoll and Dr. Ludger Wirtz. Samples featuring individual nanotubes have been provided in collaboration with Nicronex Ltd., Luxembourg (www.nicronex.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Jungen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jungen, A. (2018). Nano-spectroscopy of Individual Carbon Nanotubes and Isolated Graphene Sheets. In: Toporski, J., Dieing, T., Hollricher, O. (eds) Confocal Raman Microscopy. Springer Series in Surface Sciences, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-319-75380-5_7

Download citation

Publish with us

Policies and ethics