Effect of Roughness on Ellipsometry Analysis

  • Hiroyuki FujiwaraEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 212)


In spectroscopic ellipsometry (SE), appropriate modeling of surface roughness structures is critical for the accurate characterization of optical constants. In particular, when a simple SE analysis is performed for rough surfaces with dimensions comparable to the SE measurement wavelengths (>300 nm), the optical response of the rough surfaces cannot be expressed properly, leading to serious overestimation of absorption coefficients of solar cell materials. Accordingly, extra care is necessary when samples with rough surfaces are analyzed. Large discrepancies observed between reported dielectric functions of CuInSe2 and CH3NH3PbI3 are found to originate from underestimated roughness contributions, induced primarily by oversimplification of optical models. Quite fortunately, analysis errors generated by the roughness components can be corrected rather easily based on a simple procedure, referred to as extra roughness correction. When this correction scheme is applied, all the dielectric functions and absorption spectra show excellent agreement. It is further demonstrated that the analytical treatment of roughness in SE influences the optical simulation result of solar cells. In this chapter, we will examine the effect of roughness on SE results and discuss the proper SE analysis method for solar cell materials.


  1. 1.
    S. Minoura, K. Kodera, T. Maekawa, K. Miyazaki, S. Niki, H. Fujiwara, J. Appl. Phys. 113, 063505 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T.N. Murakami, S. Fujimoto, M. Chikamatsu, H. Fujiwara, Phys. Rev. Appl. 5, 014012 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    H. Fujiwara, S. Fujimoto, M. Tamakoshi, M. Kato, H. Kadowaki, T. Miyadera, H. Tampo, M. Chikamatsu, H. Shibata, Appl. Surf. Sci. 421, 276 (2017)Google Scholar
  4. 4.
    D.E. Aspnes, Thin Solid Films 89, 249 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    D.E. Aspnes, Phys. Rev. B 25, 1358 (1982)ADSCrossRefGoogle Scholar
  6. 6.
    H. Fujiwara, J. Koh, P.I. Rovira, R.W. Collins, Phys. Rev. B 61, 10832 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, UK, 2007)CrossRefGoogle Scholar
  8. 8.
    J. Koh, Y. Lu, C.R. Wronski, Y. Kuang, R.W. Collins, T.T. Tsong, Y.E. Strausser, Appl. Phys. Lett. 69, 1297 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    H. Fujiwara, M. Kondo, A. Matsuda, Phys. Rev. B 63, 115306 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    P. Petrik, L.P. Biró, M. Fried, T. Lohner, R. Berger, C. Schneider, J. Gyulai, H. Ryssel, Thin Solid Films 315, 186 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    D.E. Aspnes, J.B. Theeten, F. Hottier, Phys. Rev. B 20, 3292 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    M. Akagawa, H. Fujiwara, J. Appl. Phys. 110, 073518 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    S. Yamaguchi, Y. Sugimoto, H. Fujiwara, Thin Solid Films 565, 222 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    H.S. Jung, N.-G. Park, Small 11, 10 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, C. Ballif, J. Phys. Chem. Lett. 6, 66 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Logothetidis, J. Appl. Phys. 65, 2416 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    C.M. Herzinger, B. Johs, W.A. McGahan, J.A. Woollam, W. Paulson, J. Appl. Phys. 83, 3323 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    A. Kreuter, G. Wagner, K. Otte, G. Lippold, A. Schindler, M. Schubert, Appl. Phys. Lett. 78, 195 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    P.D. Paulson, R.W. Birkmire, W.N. Shafarman, J. Appl. Phys. 94, 879 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T.C. Sum, Nat. Mater. 13, 476 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    J.M. Ball, S.D. Stranks, M.T. Hörantner, S. Hüttner, W. Zhang, E.J.W. Crossland, I. Ramirez, M. Riede, M.B. Johnston, R.H. Friend, H.J. Snaith, Energy Environ. Sci. 8, 602 (2015)CrossRefGoogle Scholar
  22. 22.
    T. Kawashima, S. Adachi, H. Miyake, K. Sugiyama, J. Appl. Phys. 84, 5202 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    M.I. Alonso, K. Wakita, J. Pascual, M. Garriga, N. Yamamoto, Phys. Rev. B 63, 075203 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    W. Horig, H. Neumann, H. Sobotta, Thin Solid Films 48, 67 (1978)ADSCrossRefGoogle Scholar
  25. 25.
    J.R. Tuttle, D. Albin, R.J. Matson, R. Noufi, J. Appl. Phys. 66, 4408 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    C.A. Durante Rincon, E. Hernandez, M.I. Alonso, M. Garriga, S.M. Wasim, C. Rincon, M. Leon, Mater. Chem. Phys. 70, 300 (2001)CrossRefGoogle Scholar
  27. 27.
    S. Han, F.S. Hasoon, H.A. Al-Thani, A.M. Hermann, D.H. Levi, Appl. Phys. Lett. 86, 021903 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    S. Han, C. Persson, F.S. Hasoon, H.A. Al-Thani, A.M. Hermann, D.H. Levi, Phys. Rev. B 74, 085212 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    S. Han, F.S. Hasoon, A.M. Hermann, D.H. Levi, Appl. Phys. Lett. 91, 021904 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    S. Theodoropoulou, D. Papadimitriou, K. Anestou, C. Cobet, N. Esser, Semicond. Sci. Technol. 24, 015014 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    F.A. Abou-Elfotouh, G.S. Horner, T.J. Coutts, M.W. Wanlass, Solar Cells 30, 473 (1991)CrossRefGoogle Scholar
  32. 32.
    M.L. Hidalgo, M. Lachab, A. Zouaoui, M. Alhamed, C. Llinares, J.P. Peyrade, J. Galibert, Phys. Status Solidi B 200, 297 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    T. Begou, J.D. Walker, D. Attygalle, V. Ranjan, R.W. Collins, S. Marsillac, Phys. Status Solidi RRL 5, 217 (2011)CrossRefGoogle Scholar
  34. 34.
    S. Minoura, T. Maekawa, K. Kodera, A. Nakane, S. Niki, H. Fujiwara, J. Appl. Phys. 117, 195703 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, H. Fujiwara, Phys. Rev. Appl. 2, 034012 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    J.E. Jaffe, A. Zunger, Phys. Rev. B 29, 1882 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Science 342, 344 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, Energy Environ. Sci. 7, 399 (2014)CrossRefGoogle Scholar
  39. 39.
    S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014)CrossRefGoogle Scholar
  40. 40.
    Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Nat. Photon. 9, 106 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Y. Jiang, M.A. Green, R. Sheng, A. Ho-Baillie, Sol. Eng. Mater. Sol. Cells 137, 253 (2015)CrossRefGoogle Scholar
  42. 42.
    A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Chem. Mater. 27, 3397 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Shirayama, M. Kato, T. Miyadera, T. Sugita, T. Fujiseki, S. Hara, H. Kadowaki, D. Murata, M. Chikamatsu, H. Fujiwara, J. Appl. Phys. 119, 115501 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    L. Kranz, A. Abate, T. Feurer, F. Fu, E. Avancini, J. Löckinger, P. Reinhard, S.M. Zakeeruddin, M. Grätzel, S. Buecheler, A.N. Tiwari, J. Phys. Chem. Lett. 6, 2676 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gifu UniversityGifuJapan

Personalised recommendations