Data Analysis

  • James N. HilfikerEmail author
  • Jianing Sun
  • Nina Hong
Part of the Springer Series in Optical Sciences book series (SSOS, volume 212)


Data analysis is an important aspect of spectroscopic ellipsometry (SE). The measurement is directly related to the polarization change of probing light upon reflection from a sample surface. Data analysis enables determination of physical material properties of interest, such as film thickness, material dielectric functions, composition, crystallinity, conductivity, and more. This is achieved through model-based regression analysis. In this chapter, we detail the typical SE data analysis procedures. The fundamentals of optical modeling are outlined. Different ways to describe material dielectric functions are reviewed. Principles of fitting and evaluation of results are discussed. The chapter concludes with a review of strategies for common sample structures, categorized as transparent thin films, absorbing thin films, or films which are both transparent and absorbing, depending on the wavelength considered.


  1. 1.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2001)Google Scholar
  2. 2.
    D.E. Aspnes, A.A. Studna, Phys. Rev. B 27, 985 (1983)Google Scholar
  3. 3.
    Y.S. Ihn, T.J. Kim, D.E. Aspnes, J. Kossut, Y.D. Kim, Appl. Phys. Lett. 84, 693 (2004)Google Scholar
  4. 4.
    R.A. Synowicki, Thin Solid Films 313–314, 394 (1998)Google Scholar
  5. 5.
    E.D. Palik (ed.), Handbook of Optical Constants of Solids I, II, III (Academic Press, San Diego, 1998)Google Scholar
  6. 6.
    S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information (Kluwer Academic Publishers, Boston, 1999)Google Scholar
  7. 7.
    S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles (Kluwer Academic Publishers, Boston, 1999)Google Scholar
  8. 8.
    M. Losurdo, K. Hingerl (eds.), Ellipsometry at the Nanoscale (Springer, Berlin, 2013)Google Scholar
  9. 9.
    P.G. Snyder, J.A. Woollam, S.A. Alterovitz, B. Johs, J. Appl. Phys. 68, 5925 (1990)Google Scholar
  10. 10.
    E. Hecht, Optics, 4th edn. (Addison-Wesley, San Francisco, 2002)Google Scholar
  11. 11.
    R.C. Jones, J. Opt. Soc. Am. 31, 488 (1941)Google Scholar
  12. 12.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (North Holland, Amsterdam, 1977)Google Scholar
  13. 13.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, UK, 2007)Google Scholar
  14. 14.
    G.E. Jellison, Jr., Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (William Andrew, New York, 2005), pp. 241–245. Chap. “Data Analysis for Spectroscopic Ellipsometry”Google Scholar
  15. 15.
    J. Woollam, B. Johs, C. Herzinger, J. Hilfiker, R. Synowicki, C. Bungay, SPIE Proc. CR72, 10 (1999)Google Scholar
  16. 16.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C (Cambridge University Press, Cambridge, 1988)Google Scholar
  17. 17.
    J.N. Hilfiker, N. Singh, T. Tiwald, D. Convey, S.M. Smith, J.H. Baker, H.G. Tompkins, Thin Solid Films 516, 7979–7989 (2008)Google Scholar
  18. 18.
    J.N. Hilfiker, R.A. Synowicki, H.G. Tompkins, SVC Proc. 511–516 (2008)Google Scholar
  19. 19.
    D.E. Aspnes, F. Hottier, J.B. Theeten, Phys. Rev. B 20, 3292 (1979)Google Scholar
  20. 20.
    M.F. Saenger, J. Sun, M. Schadel, J.N. Hilfiker, M. Schubert, J.A. Woollam, Thin Solid Films 518, 1830 (2010)Google Scholar
  21. 21.
    S.-H. Hsu, E.-S. Liu, Y.-C. Chang, J.N. Hilfiker, Y.D. Kim, T.J. Kim, C-J. Lin, G.-R. Lin, Phys. Status Solid A 205, 876 (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.J.A. Woollam Co., Inc.LincolnUSA

Personalised recommendations