Transparent Conductive Oxide Materials

  • Hiroyuki FujiwaraEmail author
  • Shohei Fujimoto
Part of the Springer Series in Optical Sciences book series (SSOS, volume 212)


For most of solar cell devices, a transparent conductive oxide (TCO) electrode is a vital component. Nevertheless, free carrier and interband transitions that occur within TCO layers reduce the short-circuit current density (Jsc) rather significantly. Thus, the suppression of the parasitic optical absorption in TCO layers is crucial in improving solar cell efficiencies. The free carrier absorption in all TCO materials can be described by the simple Drude model in which absorption characteristics of free electrons are expressed based on two parameters: i.e., optical carrier concentration and optical mobility. From these parameters, the carrier transport properties of TCO materials can further be studied. In this chapter, the optical transitions and physics of free electrons in various TCO materials are reviewed. In particular, the variation of TCO optical constants with carrier concentration is explained in detail. This chapter further introduces ellipsometry analyses of various TCO layers. The ellipsometry characterization examples described here include the analyses of standard (thin) layers, thicker layers, and textured layers. From the absorption features derived from theoretical treatments summarized in this chapter, Jsc loss in actual solar cells can be estimated.


  1. 1.
    T. Hara, T. Maekawa, S. Minoura, Y. Sago, S. Niki, H. Fujiwara, Phys. Rev. Appl. 2, 034012 (2014)ADSGoogle Scholar
  2. 2.
    M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)ADSGoogle Scholar
  3. 3.
    J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Nat. Nanotech. 11, 75 (2016)ADSGoogle Scholar
  4. 4.
    P. Koirala, J. Li, H.P. Yoon, P. Aryal, S. Marsillac, A.A. Rockett, N.J. Podraza, R.W. Collins, Prog. Photovolt. 24, 1055 (2016)Google Scholar
  5. 5.
    J.P. Seif, A. Descoeudres, M. Filipic, F. Smole, M. Topic, Z.C. Holman, S. De Wolf, C. Ballif, J. Appl. Phys. 115, 024502 (2014)ADSGoogle Scholar
  6. 6.
    J. Bullock, M. Hettick, J. Geissbuhler, A.J. Ong, T. Allen, C.M. Sutter-Fella, T. Chen, H. Ota, E.W. Schaler, S. De Wolf, C. Ballif, A. Cuevas, A. Javey, Nat. Energy 1, 15031 (2016)ADSGoogle Scholar
  7. 7.
    X.L. Chen, B.H. Xu, J.M. Xue, Y. Zhao, C.C. Wei, J. Sun, Y. Wang, X.D. Zhang, X.H. Geng, Thin Solid Films 515, 3753 (2007)ADSGoogle Scholar
  8. 8.
    J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, Thin Solid Films 451–452, 518 (2004)Google Scholar
  9. 9.
    L. Kranz, A. Abate, T. Feurer, F. Fu, E. Avancini, J. Lockinger, P. Reinhard, S.M. Zakeeruddin, M. Gratzel, S. Buecheler, A.N. Tiwari, J. Phys. Chem. Lett. 6, 2676 (2015)Google Scholar
  10. 10.
    M.T. Greiner, M.G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, Z.-H. Lu, Nat. Mater. 11, 76 (2012)ADSGoogle Scholar
  11. 11.
    H. Hosono, T. Kamiya, in Technology of Transparent Conductive Oxides (in Japanese), ed. by Japan Society for the Promotion of Science, Chapter 4 (Ohmsha, Tokyo, 2014), pp. 109–140Google Scholar
  12. 12.
    G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett. 88, 253503 (2006)ADSGoogle Scholar
  13. 13.
    M. Kroger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Appl. Phys. Lett. 95, 123301 (2009)ADSGoogle Scholar
  14. 14.
    Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 6, 591 (2012)ADSGoogle Scholar
  15. 15.
    C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R.M. Wallace, A. Javey, Nano Lett. 14, 967 (2014)ADSGoogle Scholar
  16. 16.
    J. Geissbuhler, J. Werner, S. Martin de Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf, C. Ballif, Appl. Phys. Lett. 107, 081601 (2015)ADSGoogle Scholar
  17. 17.
    J. Chen, J. Li, C. Thornberry, M.N. Sestak, R.W. Collins, J.D. Walker, S. Marsillac, A.R. Aquino, A. Rockett, in Proceedings of the 34th IEEE PVSC (IEEE, New York, 2009), p. 1748Google Scholar
  18. 18.
    T. Koida, M. Kondo, K. Tsutsumi, A. Sakaguchi, M. Suzuki, H. Fujiwara, J. Appl. Phys. 107, 033514 (2010)ADSGoogle Scholar
  19. 19.
    T. Koida, Phys. Status Solidi A. 214, 1600464 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T.N. Murakami, S. Fujimoto, M. Chikamatsu, H. Fujiwara, Phys. Rev. Appl. 5, 014012 (2016)ADSGoogle Scholar
  21. 21.
    A. Nakane, H. Tampo, M. Tamakoshi, S. Fujimoto, K.M. Kim, S. Kim, H. Shibata, S. Niki, H. Fujiwara, J. Appl. Phys. 120, 064505 (2016)ADSGoogle Scholar
  22. 22.
    For a review, see S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka, K. Matsubara, Prog. Photovolt. 18, 453 (2010)Google Scholar
  23. 23.
    M. Powalla, G. Voorwinden, D. Hariskos, P. Jackson, R. Kniese, Thin Solid Films 517, 2111 (2009)ADSGoogle Scholar
  24. 24.
    E. Hecht, Optics, 4th edn. (Addison Wesley, San Francisco, 2002)Google Scholar
  25. 25.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, UK, 2007)Google Scholar
  26. 26.
    H. Fujiwara, M. Kondo, J. Appl. Phys. 101, 054516 (2007)ADSGoogle Scholar
  27. 27.
    D. Zhang, I.A. Digdaya, R. Santbergen, R.A.C.M.M. van Swaaij, P. Bronsveld, M. Zeman, J.A.M. van Roosmalen, A.W. Weeber, Sol. Energy Mater. Sol. Cells 117, 132 (2013)Google Scholar
  28. 28.
    B. O’Regan, M. Gratzel, Nature 353, 737 (1991)ADSGoogle Scholar
  29. 29.
    K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, T.-C. Wen, Sci. Rep. 4, 4756 (2014)Google Scholar
  30. 30.
    L. Barraud, Z.C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. De Wolf, C. Ballif, Sol. Energy Mater. Sol. Cells 115, 151 (2013)Google Scholar
  31. 31.
    Unpublished results of S. Yamaguchi (SCREEN Semiconductor Solutions Co., Ltd.) and Y. Sugimoto (SCREEN Holdings Co., Ltd.)Google Scholar
  32. 32.
    H.S. So, J.-W. Park, D.H. Jung, K.H. Ko, H. Lee, J. Appl. Phys. 118, 085303 (2015)ADSGoogle Scholar
  33. 33.
    H. Fujiwara, M. Kondo, Phys. Rev. B 71, 075109 (2005)ADSGoogle Scholar
  34. 34.
    H. Yoshikawa, S. Adachi, Jpn. J. Appl. Phys. 36, 6237 (1997)ADSGoogle Scholar
  35. 35.
    G.E. Jellison Jr., L.A. Boatner, Phys. Rev. B 58, 3586 (1998); Erratum, Phys. Rev. B 65, 049902 (2001)Google Scholar
  36. 36.
    A.B. Djurisic, Y. Chan, E.H. Li, Appl. Phys. A 76, 37 (2003)ADSGoogle Scholar
  37. 37.
    Z.C. Holman, M. Filipic, A. Descoeudres, S. De Wolf, F. Smole, M. Topic, C. Ballif, J. Appl. Phys. 113, 013107 (2013)ADSGoogle Scholar
  38. 38.
    D.E. Aspnes, A.A. Studna, E. Kinsbron, Phys. Rev. B 29, 768 (1984)ADSGoogle Scholar
  39. 39.
    C. Tanguy, Phys. Rev. B 60, 10660 (1999)ADSGoogle Scholar
  40. 40.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986)zbMATHGoogle Scholar
  41. 41.
    P.I. Rovira, R.W. Collins, J. Appl. Phys. 85, 2015 (1999)ADSGoogle Scholar
  42. 42.
    M. Akagawa, H. Fujiwara, J. Appl. Phys. 112, 083507 (2012)ADSGoogle Scholar
  43. 43.
    Y. Sago, H. Fujiwara, Jpn. J. Appl. Phys. 51, 10NB01 (2012)Google Scholar
  44. 44.
    K. Sago, H. Kuramochi, H. Iigusa, K. Utsumi, H. Fujiwara, J. Appl. Phys. 115, 133505 (2014)ADSGoogle Scholar
  45. 45.
    T. Gerfin, M. Gratzel, J. Appl. Phys. 79, 1722 (1996)ADSGoogle Scholar
  46. 46.
    R.A. Synowicki, Thin Solid Films 313–314, 394 (1998)ADSGoogle Scholar
  47. 47.
    K. Zhang, A.R. Forouhi, I. Bloomer, J. Vac. Sci. Technol. A 17, 1843 (1999)ADSGoogle Scholar
  48. 48.
    L. Meng, E. Crossan, A. Voronov, F. Placido, Thin Solid Films 422, 80 (2002)ADSGoogle Scholar
  49. 49.
    M. Losurdo, Thin Solid Films 455–456, 301 (2004)ADSGoogle Scholar
  50. 50.
    G.E. Jellison Jr., F.A. Modine, Appl. Phys. Lett. 69, 371 (1996); Erratum, Appl. Phys. Lett. 69, 2137 (1996)Google Scholar
  51. 51.
    E. Shanthi, V. Dutta, A. Banerjee, K.L. Chopra, J. Appl. Phys. 51, 6243 (1980)ADSGoogle Scholar
  52. 52.
    E. Shanthi, A. Banerjee, V. Dutta, K.L. Chopra, J. Appl. Phys. 53, 1615 (1982)ADSGoogle Scholar
  53. 53.
    S. Yamaguchi, Y. Sugimoto, H. Fujiwara, Thin Solid Films 534, 149 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    R.A. Synowicki, Phys. Status Solidi C 5, 1085 (2008)ADSGoogle Scholar
  55. 55.
    K. Forcht, A. Gombert, R. Joerger, M. Kohl, Thin Solid Films 302, 43 (1997)ADSGoogle Scholar
  56. 56.
    K. Ellmer, J. Phys. D Appl. Phys. 34, 3097 (2001)ADSGoogle Scholar
  57. 57.
    Z.M. Jarzebski, Phys. Status Solidi A 71, 13 (1982)ADSGoogle Scholar
  58. 58.
    M. Feneberg, J. Nixdorf, C. Lidig, R. Goldhahn, Z. Galazka, O. Bierwagen, J.S. Speck, Phys. Rev. B 93, 045203 (2016)ADSGoogle Scholar
  59. 59.
    T. Nagashima, M. Hangyo, Appl. Phys. Lett. 79, 3917 (2001)ADSGoogle Scholar
  60. 60.
    T. Hofmann, C.M. Herzinger, A. Boosalis, T.E. Tiwald, J.A. Woollam, M. Schubert, Rev. Sci. Instrum. 81, 023101 (2010)ADSGoogle Scholar
  61. 61.
    R. Clanget, Appl. Phys. 2, 247 (1973)ADSGoogle Scholar
  62. 62.
    Y. Ohhata, F. Shinoki, S. Yoshida, Thin Solid Films 59, 255 (1979)ADSGoogle Scholar
  63. 63.
    T. Pisarkiewicz, K. Zakrzewska, E. Leja, Thin Solid Films 174, 217 (1989)ADSGoogle Scholar
  64. 64.
    T. Minami, H. Sato, K. Ohashi, T. Tomofuji, S. Takata, J. Cryst. Growth 117, 370 (1992)ADSGoogle Scholar
  65. 65.
    S. Brehme, F. Fenske, W. Fuhs, E. Nebauer, M. Poschenrieder, B. Selle, I. Sieber, Thin Solid Films 342, 167 (1999)ADSGoogle Scholar
  66. 66.
    D.L. Young, T.J. Coutts, V.I. Kaydanov, A.S. Gilmore, W.P. Mulligan, J. Vac. Sci. Technol. A 18, 2978 (2000)ADSGoogle Scholar
  67. 67.
    W.M. Kim, I.H. Kim, J.H. Ko, B. Cheong, T.S. Lee, K.S. Lee, D. Kim, T.-Y. Seong, J. Phys. D 41, 195409 (2008)ADSGoogle Scholar
  68. 68.
    F. Ruske, A. Pflug, V. Sittinger, B. Szyszka, D. Greiner, B. Rech, Thin Solid Films 518, 1289 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    T. Yamada, H. Makino, N. Yamamoto, T. Yamamoto, J. Appl. Phys. 107, 123534 (2010)ADSGoogle Scholar
  70. 70.
    J.S. Kim, J.-H. Jeong, J.K. Park, Y.J. Baik, I.H. Kim, T.-Y. Seong, W.M. Kim, J. Appl. Phys. 111, 123507 (2012)ADSGoogle Scholar
  71. 71.
    A.A. Ziabari, S.M. Rozati, Phys. B 407, 4512 (2012)ADSGoogle Scholar
  72. 72.
    G. Rey, C. Ternon, M. Modreanu, X. Mescot, V. Consonni, D. Bellet, J. Appl. Phys. 114, 183713 (2013)ADSGoogle Scholar
  73. 73.
    C. A. Niedermeier, S. Rhode, K. Ide, H. Hiramatsu, H. Hosono, T. Kamiya, M. A. Moram, Phys. Rev. B 95, 161202 (2017)Google Scholar
  74. 74.
    D.S. Ginley (ed.), Handbook of Transparent Conductors (Springer, New York, 2010)Google Scholar
  75. 75.
    R.E. Hummel, Electronic Properties of Materials, 4th edn. (Springer, New York, 2011)Google Scholar
  76. 76.
    J.A. Sans, J.F. Sanchez-Royo, A. Segura, G. Tobias, E. Canadell, Phys. Rev. B 79, 195105 (2009)ADSGoogle Scholar
  77. 77.
    I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)ADSGoogle Scholar
  78. 78.
    B.E. Sernelius, K.-F. Berggren, Z.-C. Jin, I. Hamberg, C.G. Granqvist, Phys. Rev. B 37, 10244 (1988)ADSGoogle Scholar
  79. 79.
    N. Sommer, J. Hupkes, U. Rau, Phys. Rev. Appl. 5, 024009 (2016)ADSGoogle Scholar
  80. 80.
    D.C. Look, C.E. Stutz, R.J. Molnar, K. Saarinen, Z. Liliental-Weber, Solid State Commun. 117, 571 (2001)ADSGoogle Scholar
  81. 81.
    D.C. Look, H. Lu, W.J. Schaff, J. Jasinski, Z. Liliental-Weber, Appl. Phys. Lett. 80, 258 (2002)ADSGoogle Scholar
  82. 82.
    B.L. Anderson, R.L. Anderson, Fundamentals of Semiconductor Devices (McGraw-Hill, New York, 2005)Google Scholar
  83. 83.
    J. Steinhauser, S. Fay, N. Oliveira, E. Vallat-Sauvain, C. Ballif, Appl. Phys. Lett. 9, 142107 (2007)ADSGoogle Scholar
  84. 84.
    S. Fay, J. Steinhauser, S. Nicolay, C. Ballif, Thin Solid Films 518, 2961 (2010)ADSGoogle Scholar
  85. 85.
    E.F. Venger, A.V. Melnichuk, L.Y. Melnichuk, Y.A. Pasechnik, Phys. Status Solidi B 188, 823 (1995)ADSGoogle Scholar
  86. 86.
    T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 24, L781 (1985)ADSGoogle Scholar
  87. 87.
    S. Major, A. Banerjee, K.L. Chopra, Thin Solid Films 125, 179 (1985)ADSGoogle Scholar
  88. 88.
    B.H. Choi, H.B. Im, J.S. Song, K.H. Yoon, Thin Solid Films 193–194, 712 (1990)Google Scholar
  89. 89.
    Y. Shigesato, S. Takaki, T. Haranou, Appl. Surf. Sci. 48/49, 269 (1991)Google Scholar
  90. 90.
    J. Hu, R.G. Gordon, J. Appl. Phys. 72, 5381 (1992)ADSGoogle Scholar
  91. 91.
    Y. Qu, T.A. Gessert, K. Ramanathan, R.G. Dhere, R. Noufi, T.J. Coutts, J. Vac. Sci. Technol. A 11, 996 (1993)ADSGoogle Scholar
  92. 92.
    C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech, M. Wuttig, J. Appl. Phys. 95, 1911 (2004)ADSGoogle Scholar
  93. 93.
    N. Ehrmann, R. Reineke-Koch, Thin Solid Films 519, 1475 (2010)ADSGoogle Scholar
  94. 94.
    O. Nakagawara, Y. Kishimoto, H. Seto, Y. Koshido, Y. Yoshino, T. Makino, Appl. Phys. Lett. 89, 091904 (2006)ADSGoogle Scholar
  95. 95.
    T. Minami, T. Miyata, Y. Ohtani, T. Kuboi, Phys. Status Solidi RRL 1, R31 (2007)ADSGoogle Scholar
  96. 96.
    T. Minami, T. Kuboi, T. Miyata, Y. Ohtani, Phys. Status Solidi A 205, 255 (2008)ADSGoogle Scholar
  97. 97.
    M. Kambe, M. Fukawa, N. Taneda, K. Sato, Sol. Energy Mater. Sol. Cells 90, 3014 (2006)Google Scholar
  98. 98.
    T. Matsui, A. Bidiville, K. Maejima, H. Sai, T. Koida, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, Appl. Phys. Lett. 106, 053901 (2015)ADSGoogle Scholar
  99. 99.
    K. Ding, T. Kirchartz, B.E. Pieters, C. Ulbrich, A.M. Ermes, S. Schicho, A. Lambertz, R. Carius, U. Rau, Sol. Energy Mater. Sol. Cells 95, 3318 (2011)Google Scholar
  100. 100.
    M. Zeman, O. Isabella, S. Solntsev, K. Jager, Sol. Energy Mater. Sol. Cells 119, 94 (2013)Google Scholar
  101. 101.
    B. Rech, H. Wagner, Appl. Phys. A 69, 155 (1999)ADSGoogle Scholar
  102. 102.
    K. Sato, Y. Gotoh, Y. Wakayama, Y. Hayashi, K. Adachi, H. Nishimura, Reports Res. Lab. Asahi Glass Co. Ltd, 42, 129 (1992)Google Scholar
  103. 103.
    S. Yamaguchi, Y. Sugimoto, H. Fujiwara, Thin Solid Films 565, 222 (2014)ADSGoogle Scholar
  104. 104.
    Pilkington TEC glass performance dataGoogle Scholar
  105. 105.
    D. Bhachu, M.R. Waugh, K. Zeissler, W.R. Branford, I.P. Parkin, Chem. Eur. J. 17, 11613 (2011)Google Scholar
  106. 106.
    J.W. Bowers, H.M. Upadhyaya, S. Calnan, R. Hashimoto, T. Nakada, A.N. Tiwari, Prog. Photovolt. 17, 265 (2009)Google Scholar
  107. 107.
    C.K.T. Chew, C. Salcianu, P. Bishop, C.J. Carmalt, I.P. Parkin, J. Mater. Chem. C 3, 1118 (2015)Google Scholar
  108. 108.
    A. Luque, S. Hegedus (eds.), Handbook of Photovoltaic Science and Engineering (Wiley, West Sussex, UK, 2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gifu UniversityGifuJapan

Personalised recommendations