Advertisement

Organic-Inorganic Hybrid Perovskite Solar Cells

  • Hiroyuki FujiwaraEmail author
  • Nikolas J. Podraza
  • Maria Isabel Alonso
  • Masato Kato
  • Kiran Ghimire
  • Tetsuhiko Miyadera
  • Masayuki Chikamatsu
Chapter
  • 764 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 212)

Abstract

Quite high efficiencies exceeding 20% have been realized in solar cells incorporating organic-inorganic hybrid perovskites (APbX3), which have a unique structure with a center cation [A = CH3NH3+, HC(NH2) 2 + ] located within a PbX3 cage (X = I, Br, Cl). Superior characteristics of hybrid perovskite solar cells can be understood from the nature of optical transitions and the efficient carrier collection in the device. From these points of view, this chapter provides details on optical properties of various hybrid perovskite materials and carrier dynamics in the solar cells. In particular, based on the first-principles analyses of different perovskite materials, we present universal rules that allow the unified interpretation of the optical absorption phenomenon in APbX3 perovskites. The external quantum efficiency (EQE) analysis further reveals that high short-circuit current densities (>20 mA/cm2) observed in the perovskite solar cells originate from electric-field-assisted carrier collection and the suppressed optical losses in the devices. Although hybrid perovskites have quite favorable characteristics for solar cells, these materials exhibit rather intense phase change upon exposure to humid air. In this chapter, the degradation process of CH3NH3PbI3 in humid air, characterized by applying ellipsometry technique, is further presented and discussed.

Notes

Acknowledgements

N. J. Podraza and K. Ghimire would like to acknowledge D. Zhao, A. Cimaroli, Y. Ke, F. Hong, T. Shi, and Prof. Y. Yan for providing samples and materials; M. Junda for graphical assistance; and the National Science Foundation for financial support (CHE-1230246). M. I. Alonso acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through grants CSD2010-00044, MAT2015-70850-P, and the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0496).

References

  1. 1.
    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Science 348, 1234 (2015)ADSGoogle Scholar
  2. 2.
    D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Sci. Adv. 2, e1501170 (2016)ADSGoogle Scholar
  3. 3.
    M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 9, 1989 (2016)Google Scholar
  4. 4.
    T.J. Jacobsson, J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 9, 1706 (2016)Google Scholar
  5. 5.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)Google Scholar
  6. 6.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)ADSGoogle Scholar
  7. 7.
    M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)ADSGoogle Scholar
  8. 8.
    J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Nature 499, 316 (2013)ADSGoogle Scholar
  9. 9.
    T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Grätzel, T.J. White, J. Mater. Chem. A 1, 5628 (2013)Google Scholar
  10. 10.
    P. Gao, M. Grätzel, M.K. Nazeeruddin, Energy Environ. Sci. 7, 2448 (2014)Google Scholar
  11. 11.
    M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photon. 8, 506 (2014)ADSGoogle Scholar
  12. 12.
    H.S. Jung, N.-G. Park, Small 11, 10 (2015)Google Scholar
  13. 13.
    T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Nat. Rev. Mater. 1, 15007 (2016)ADSGoogle Scholar
  14. 14.
    J.S. Manser, J.A. Christians, P.V. Kamat, Chem. Rev. 116, 12956 (2016)Google Scholar
  15. 15.
    T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, T. Baikie, J. Phys. Chem. C 118, 16458 (2014)Google Scholar
  16. 16.
    G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Energy Environ. Sci. 7, 982 (2014)Google Scholar
  17. 17.
    S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, Chem. Mater. 26, 1485 (2014)Google Scholar
  18. 18.
    Q. Han, S.-H. Bae, P. Sun, Y.-T. Hsieh, Y. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yang, Adv. Mater. 28, 2253 (2016)Google Scholar
  19. 19.
    M.T. Weller, O.J. Weber, J.M. Frost, A. Walsh, J. Phys. Chem. Lett. 6, 3209 (2015)Google Scholar
  20. 20.
    N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Angew. Chem. Int. Ed. 53, 3151 (2014)Google Scholar
  21. 21.
    J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S.M. Cho, N.-G. Park, Adv. Energy Mater. 5, 1501310 (2015)Google Scholar
  22. 22.
    Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry, K. Zhu, Chem. Mater. 28, 284 (2016)Google Scholar
  23. 23.
    C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S.M. Zakeeruddin, U. Röthlisberger, M. Grätzel, Energy Environ. Sci. 9, 656 (2016)Google Scholar
  24. 24.
    D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, Science 351, 151 (2016)ADSGoogle Scholar
  25. 25.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T.N. Murakami, S. Fujimoto, M. Chikamatsu, H. Fujiwara, Phys. Rev. Appl. 5, 014012 (2016)ADSGoogle Scholar
  27. 27.
    M. Kato, T. Fujiseki, T. Miyadera, T. Sugita, S. Fujimoto, M. Tamakoshi, M. Chikamatsu, H. Fujiwara, J. Appl. Phys. 121, 115501 (2017)ADSGoogle Scholar
  28. 28.
    D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P.A. Dowben, O.F. Mohammed, E.H. Sargent, O.M. Bakr, Science 347, 519 (2015)ADSGoogle Scholar
  29. 29.
    C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013)Google Scholar
  30. 30.
    A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, M. Grätzel, F. De, Angelis. Nano Lett. 14, 3608 (2014)ADSGoogle Scholar
  31. 31.
    J.-H. Lee, N.C. Bristowe, P.D. Bristowe, A.K. Cheetham, Chem. Commun. 51, 6434 (2015)Google Scholar
  32. 32.
    J.H. Lee, J.-H. Lee, E.-H. Kong, H.M. Jang, Sci. Rep. 6, 21687 (2016)ADSGoogle Scholar
  33. 33.
    J.S. Bechtel, R. Seshadri, A. Van der Ven, J. Phys. Chem. C 120, 12403 (2016)Google Scholar
  34. 34.
    R.E. Wasylishen, O. Knop, J.B. Macdonald, Solid State Commun. 56, 581 (1985)ADSGoogle Scholar
  35. 35.
    E. Mosconi, C. Quarti, T. Ivanovska, G. Ruani, F. De Angelis, Phys. Chem. Chem. Phys. 16, 16137 (2014)Google Scholar
  36. 36.
    A. Mattoni, A. Filippetti, M.I. Saba, P. Delugas, J. Phys. Chem. C 119, 17421 (2015)Google Scholar
  37. 37.
    A.M.A. Leguy, J.M. Frost, A.P. McMahon, V.G. Sakai, W. Kochelmann, C. Law, X. Li, F. Foglia, A. Walsh, B.C. O’Regan, J. Nelson, J.T. Cabral, R.F. Barnes, Nat. Commun. 6, 7124 (2015)ADSGoogle Scholar
  38. 38.
    M.A. Carignano, A. Kachmar, J. Phys. Chem. C 119, 8991 (2015)Google Scholar
  39. 39.
    A.A. Bakulin, O. Selig, H.J. Bakker, Y.L.A. Rezus, C. Müller, T. Glaser, R. Lovrincic, Z. Sun, Z. Chen, A. Walsh, J.M. Frost, T.L.C. Jansen, J. Phys. Chem. Lett. 6, 3663 (2015)Google Scholar
  40. 40.
    M.A. Carignano, Y. Saeed, S.A. Aravindh, I.S. Roqan, J. Even, C. Katan, Phys. Chem. Chem. Phys. 18, 27109 (2016)Google Scholar
  41. 41.
    M.R. Filip, G.E. Eperon, H.J. Snaith, F. Giustino, Nat. Commun. 5, 5757 (2014)ADSGoogle Scholar
  42. 42.
    J. Kim, S.-C. Lee, S.-H. Lee, K.-H. Hong, J. Phys. Chem. C 119, 4627 (2015)Google Scholar
  43. 43.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Science 342, 344 (2013)ADSGoogle Scholar
  44. 44.
    S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, Energy Environ. Sci. 7, 399 (2014)Google Scholar
  45. 45.
    S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014)Google Scholar
  46. 46.
    G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, S. Dharani, M. Grätzel, S. Mhaisalkar, T.C. Sum, Nat. Mater. 13, 476 (2014)ADSGoogle Scholar
  47. 47.
    Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Nat. Photon. 9, 106 (2015)ADSGoogle Scholar
  48. 48.
    J.M. Ball, S.D. Stranks, M.T. Hörantner, S. Hüttner, W. Zhang, E.J.W. Crossland, I. Ramirez, M. Riede, M.B. Johnston, R.H. Friend, H.J. Snaith, Energy Environ. Sci. 8, 602 (2015)Google Scholar
  49. 49.
    P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, C. Ballif, J. Phys. Chem. Lett. 6, 66 (2015)Google Scholar
  50. 50.
    Y. Jiang, M.A. Green, R. Sheng, A. Ho-Baillie, Sol. Eng. Mater. Sol. Cells 137, 253 (2015)Google Scholar
  51. 51.
    A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Chem. Mater. 27, 3397 (2015)Google Scholar
  52. 52.
    A.M.A. Leguy, P. Azarhoosh, M.I. Alonso, M. Campoy-Quiles, O.J. Weber, J. Yao, D. Bryant, M.T. Weller, J. Nelson, A. Walsh, M. van Schilfgaarde, P.R.F. Barnes, Nanoscale 8, 6317 (2016)ADSGoogle Scholar
  53. 53.
    T. Miyadera, T. Sugita, H. Tampo, K. Matsubara, M. Chikamatsu, A.C.S. Appl, Mater. Interfaces. 8, 26013 (2016)Google Scholar
  54. 54.
    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano Lett. 13, 1764 (2013)ADSGoogle Scholar
  55. 55.
    G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 3, 8970 (2015)Google Scholar
  56. 56.
    T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, H.J. Snaith, Adv. Energy Mater. 5, 1500963 (2015)Google Scholar
  57. 57.
    G. Murugadoss, S. Tanaka, G. Mizuta, S. Kanaya, H. Nishino, T. Umeyama, H. Imahori, S. Ito, Jpn. J. Appl. Phys. 54, 08KF08 (2015)Google Scholar
  58. 58.
    T.A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A.A. Dubale, B.-J. Hwang, Energy Environ. Sci. 9, 323 (2016)Google Scholar
  59. 59.
    M. Shirayama, M. Kato, T. Miyadera, T. Sugita, T. Fujiseki, S. Hara, H. Kadowaki, D. Murata, M. Chikamatsu, H. Fujiwara, J. Appl. Phys. 119, 115501 (2016)ADSGoogle Scholar
  60. 60.
    H. Fujiwara, J. Koh, P.I. Rovira, R.W. Collins, Phys. Rev. B 61, 10832 (2000)ADSGoogle Scholar
  61. 61.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, 2007)Google Scholar
  62. 62.
    N. Kitazawa, Y. Watanabe, Y. Nakamura, J. Mater. Sci. 37, 3585 (2002)ADSGoogle Scholar
  63. 63.
    W.-J. Yin, T. Shi, Y. Yan, Adv. Mater. 26, 4653 (2014)Google Scholar
  64. 64.
    W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, J. Mater. Chem. A 3, 8926 (2015)Google Scholar
  65. 65.
    J. Bordas, J. Robertson, A. Jakobsson, J. Phys. C 11, 2607 (1978)ADSGoogle Scholar
  66. 66.
    E. Doni, G. Grosso, G. Harbeke, E. Meier, E. Tosatti, Phys. Stat. Sol. (b) 68, 569 (1975)ADSGoogle Scholar
  67. 67.
    Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, Appl. Phys. Express 7, 032302 (2014)ADSGoogle Scholar
  68. 68.
    A. Binek, F.C. Hanusch, P. Docampo, T. Bein, J. Phys. Chem. Lett. 6, 1249 (2015)Google Scholar
  69. 69.
    F. Hao, C.C. Stoumpos, Z. Liu, R.P.H. Chang, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 16411 (2014)Google Scholar
  70. 70.
    O.N. Yunakova, V.K. Miloslavskii, E.N. Kovalenko, Opt. Spectrosc. 112, 91 (2012)ADSGoogle Scholar
  71. 71.
    Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, Y. Kanemitsu, IEEE J. Photovolt. 5, 401 (2015)Google Scholar
  72. 72.
    A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.-W. Wang, S.D. Stranks, H.J. Snaith, R.J. Nicholas, Nat. Phys. 11, 582 (2015)Google Scholar
  73. 73.
    E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, J. Phys. Chem. C 117, 13902 (2013)Google Scholar
  74. 74.
    F. Brivio, A.B. Walker, A. Walsh, APL Mater. 1, 042111 (2013)ADSGoogle Scholar
  75. 75.
    T. Umebayashi, K. Asai, T. Kondo, A. Nakao, Phys. Rev. B 67, 155405 (2003)ADSGoogle Scholar
  76. 76.
    D. Li, J. Meng, Y. Niu, H. Zhao, C. Liang, Chem. Phys. Lett. 627, 13 (2015)ADSGoogle Scholar
  77. 77.
    H. Fujiwara, S. Fujimoto, M. Tamakoshi, M. Kato, H. Kadowaki, T. Miyadera, H. Tampo, M. Chikamatsu, H. Shibata, Appl. Surf. Sci. 421, 276 (2017)Google Scholar
  78. 78.
    M.P. Marder, Condensed Matter Physics (Wiley, Hoboken, 2010)Google Scholar
  79. 79.
    J. Even, L. Pedesseau, J.-M. Jancu, C. Katan, J. Phys. Chem. Lett. 4, 2999 (2013)Google Scholar
  80. 80.
    P. Umari, E. Mosconi, F. De Angelis, Sci. Rep. 4, 4467 (2014)Google Scholar
  81. 81.
    F. Brivio, K.T. Butler, A. Walsh, M. van Schilfgaarde, Phys. Rev. B 89, 155204 (2014)ADSGoogle Scholar
  82. 82.
    E. Menéndez-Proupin, P. Palacios, P. Wahnón, J.C. Conesa, Phys. Rev. B 90, 045207 (2014)ADSGoogle Scholar
  83. 83.
    M. Marsman, J. Paier, A. Stroppa, G. Kresse, J. Phys. Condens. Matter 20, 064201 (2008)ADSGoogle Scholar
  84. 84.
    C. Quarti, E. Mosconi, F. De Angelis, Chem. Mater. 26, 6557 (2014)Google Scholar
  85. 85.
    C. Motta, F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, S. Sanvito, Nat. Commun. 6, 7026 (2015)ADSGoogle Scholar
  86. 86.
    C. Motta, F. El-Mellouhi, S. Sanvito, Phys. Rev. B 93, 235412 (2016)ADSGoogle Scholar
  87. 87.
    A. Nakane, H. Tampo, M. Tamakoshi, S. Fujimoto, K.M. Kim, S. Kim, H. Shibata, S. Niki, H. Fujiwara, J. Appl. Phys. 120, 064505 (2016)ADSGoogle Scholar
  88. 88.
    J.H. Heo, D.H. Song, H.J. Han, S.Y. Kim, J.H. Kim, D. Kim, H.W. Shin, T.K. Ahn, C. Wolf, T.-W. Lee, S.H. Im, Adv. Mater. 27, 3424 (2015)Google Scholar
  89. 89.
    J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D. Li, Y. Luo, Q. Meng, Appl. Phys. Lett. 104, 063901 (2014)ADSGoogle Scholar
  90. 90.
    L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, MdK Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 134, 17396 (2012)Google Scholar
  91. 91.
    H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, Y. Du, T. Ma, J. Phys. Chem. Lett. 5, 3241 (2014)Google Scholar
  92. 92.
    W. Tress, N. Marinova, O. Inganäs, M.K. Nazeeruddin, S.M. Zakeeruddin, M. Graetzel, Adv. Energy Mater. 5, 1400812 (2014)Google Scholar
  93. 93.
    A.R.B.M. Yuoff, M.K. Nazeeruddin, J. Phys. Chem. Lett. 7, 851 (2016)Google Scholar
  94. 94.
    E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, D. Cahen, Nano Lett. 14, 1000 (2014)ADSGoogle Scholar
  95. 95.
    V.W. Bergmann, S.A.L. Weber, F.J. Ramos, M.K. Nazeeruddin, M. Grätzel, D. Li, A.L. Domanski, I. Lieberwirth, S. Ahmad, R. Berger, Nat. Commun. 5, 5001 (2014)Google Scholar
  96. 96.
    W. Tress, N. Marinova, T. Moehl, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, Energy Environ. Sci. 8, 995 (2015)Google Scholar
  97. 97.
    Y. Zhang, M. Liu, G.E. Eperon, T.C. Leijtens, D. McMeekin, M. Saliba, W. Zhang, M. de Bastiani, A. Petrozza, L.M. Herz, M.B. Johnston, H. Lin, H.J. Snaith, Mater. Horiz. 2, 315 (2015)Google Scholar
  98. 98.
    E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, D. Cahen, Nat. Commun. 5, 3461 (2014)ADSGoogle Scholar
  99. 99.
    Q. Wang, Y. Shao, H. Xie, L. Lyu, X. Liu, Y. Gao, J. Huang, Appl. Phys. Lett. 105, 163508 (2014)ADSGoogle Scholar
  100. 100.
    E.J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, J. Phys. Chem. Lett. 5, 680 (2014)Google Scholar
  101. 101.
    W.-J. Yin, T. Shi, Y. Yan, Appl. Phys. Lett. 104, 063903 (2014)ADSGoogle Scholar
  102. 102.
    J. Kim, S.-H. Lee, J.H. Lee, K.-H. Hong, J. Phys. Chem. Lett. 5, 1312 (2014)Google Scholar
  103. 103.
    M.L. Agiorgousis, Y.-Y. Sun, H. Zeng, S. Zhang, J. Am. Chem. Soc. 136, 14570 (2014)Google Scholar
  104. 104.
    Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang, Nano Lett. 14, 4158 (2014)ADSGoogle Scholar
  105. 105.
    H.D. Kim, H. Ohkita, H. Benten, S. Ito, Adv. Mater. 28, 917 (2016)Google Scholar
  106. 106.
    K. Ghimire, A. Cimaroli, F. Hong, T. Shi, N. Podraza, Y. Yan, in Proceedings of the 42nd Photovoltaic Specialists Conference (2015) p. 1Google Scholar
  107. 107.
    K. Ghimire, D. Zhao, A. Cimaroli, W. Ke, Y. Yan, N.J. Podraza, J. Phys. D 49, 405102 (2016)Google Scholar
  108. 108.
    L. Karki Gautam, H. Haneef, M.M. Junda, D. B. Saint John, N. J. Podraza Thin Solid Films 571, 548 (2014)ADSGoogle Scholar
  109. 109.
    K. Ghimire, D. Zhao, A. Cimaroli, W. Ke, M. Junda, Y. Yan, N. Podraza, in Proceedings of the 43rd Photovoltaic Specialists Conference (2016) p. 89Google Scholar
  110. 110.
    Z. Song, S.C. Watthage, A.B. Phillips, B.L. Tompkins, R.J. Ellingson, M.J. Heben, Chem. Mater. 27, 4612 (2015)Google Scholar
  111. 111.
    P. Docampo, T. Bein, Acc. Chem. Res. 49, 339 (2016)Google Scholar
  112. 112.
    C. Müller, T. Glaser, M. Plogmeyer, M. Sendner, S. Döring, A.A. Bakulin, C. Brzuska, R. Scheer, M.S. Pshenichnikov, W. Kowalsky, A. Pucci, R. Lovrinčić, Chem. Mater. 27, 7835 (2015)Google Scholar
  113. 113.
    I. Deretzis, A. Alberti, G. Pellegrino, E. Smecca, F. Giannazzo, N. Sakai, T. Miyasaka, A. La Magna, Appl. Phys. Lett. 106, 131904 (2015)ADSGoogle Scholar
  114. 114.
    F. Matsumoto, S.M. Vorpahl, J.Q. Banks, E. Sengupta, D.S. Ginger, J. Phys. Chem. C 119, 20810 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hiroyuki Fujiwara
    • 1
    Email author
  • Nikolas J. Podraza
    • 2
  • Maria Isabel Alonso
    • 3
  • Masato Kato
    • 1
  • Kiran Ghimire
    • 2
  • Tetsuhiko Miyadera
    • 4
  • Masayuki Chikamatsu
    • 4
  1. 1.Gifu UniversityGifuJapan
  2. 2.University of ToledoToledoUSA
  3. 3.Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)BellaterraSpain
  4. 4.Research Center for Photovoltaics, National Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations