High Efficiency III–V Solar Cells

  • Nikolas J. PodrazaEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 212)


Solar cells based on single junction or multijunction architectures with compound group III–V semiconductor absorbers have very high efficiencies. A review of spectroscopic ellipsometry characterization of component III–V semiconductors (III: Al, Ga, In; V: As, P) in the near infrared to ultraviolet range is provided. Variations in complex dielectric function spectra over the near infrared to ultraviolet have been tracked as functions of composition in ternary and quaternary alloys, compressive or tensile stress reflected in blue-shifting or red-shifting of critical point features, and limitations in the mean free path of carriers detected in critical point broadening. Extensions of ellipsometry measurements to longer wavelengths show sensitivity to free carrier absorption and infrared active phonon modes related to chemical bonding and lattice vibrations. When free carrier absorption is detected, the Drude model can be applied to deduce some electrical transport properties (resistivity, carrier mean scattering time). Measurements collected as functions of applied magnetic field, noted as the optical Hall effect, can yield carrier concentration, mobility, and effective mass. Surface oxidation effects are noted and pathways to either eliminating this contribution to measured ellipsometric spectra or incorporating it into the data analysis procedure are discussed. In situ real time spectroscopic ellipsometry is reviewed for processing monitoring and control. Future outlooks include extension of complex dielectric function databases to incorporate composition, stress, and defects simultaneously as well as accounting for systematic variations in phonon modes and free carrier absorption (due to doping type and concentrations). The challenge for future research is to successfully characterize complete III–V solar cells by spectroscopic ellipsometry in a manner similar to that already done for thin film photovoltaics based on polycrystalline or otherwise disordered materials.


  1. 1.
    J.J. Schermer, G.H. Bauhuis, P. Mulder, E.J. Haverkamp, J. van Deelen, A.T.J. van Niftrik, P.K. Larsen, Thin Solid Films 511–512, 645 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    R.R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K.M. Edmondson, D.C. Law, C.M. Fetzer, S. Mesropian, N.H. Karam, Proceedings of the 24th European Photovoltaic Solar Energy Conference, 55 (2009)Google Scholar
  3. 3.
    G.J. Bauhuis, P. Mulder, E.J. Haverkamp, J.C.C.M. Huijben, J.J. Schermer, Sol. Energy Mater Sol. Cells 93, 1488 (2009)CrossRefGoogle Scholar
  4. 4.
    B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.H. Higashi, Proceedings of the 37th PV Specialists Conference, 4 (2011)Google Scholar
  5. 5.
    Press Release, Sharp Corporation, Accessed 31 May 2012
  6. 6.
  7. 7.
    Press Release, National Renewable Energy Laboratory, 16 Dec 2014, NR-4514Google Scholar
  8. 8.
    P.T. Chiu, D.L. Law, R.L. Woo, S. Singer, W.D. Hong, Z. Zakaria, J.C. Boisvert, S. Mesroian, R.R. King, N.H. Karam, Proceedings of the 40th PV Specialists Conference, 11 (2014)Google Scholar
  9. 9.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. PV Res. Appl. 24, 3 (2016)CrossRefGoogle Scholar
  10. 10.
    D.E. Aspnes, G.P. Schwartz, G.J. Gaultieri, A.A. Studna, B. Schwartz, J. Electrochem. Soc. 128, 590 (1981)CrossRefGoogle Scholar
  11. 11.
    S.M. Kelso, D.E. Aspnes, M.A. Pollack, R.E. Nahory, Phys. Rev. B 26, 6669 (1982)ADSCrossRefGoogle Scholar
  12. 12.
    D.E. Aspnes, A.A. Studna, Phys. Rev. B 27, 985 (1983)ADSCrossRefGoogle Scholar
  13. 13.
    S. Adachi, Phys. Rev. B 38, 12345 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    S. Adachi, Phys. Rev. B 39, 12612 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    S. Adachi, J. of Appl. Phys. 66, 6030 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    P.G. Snyder, J.A. Woollam, S.A. Alterovitz, B. Johs, J. of Appl. Phys. 68, 5925 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    H.W. Dinges, H. Burkhard, R. Losch, H. Nickel, W. Schlapp, Mater. Sci. Eng. 21, 174 (1993)CrossRefGoogle Scholar
  18. 18.
    S. Adachi, H. Kato, A. Moki, K. Ohtsuka, J. of Appl. Phys. 75, 478 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    H. Lee, D. Biswas, M.V. Klein, H. Morkoc, D.E. Aspnes, B.D. Choe, J. Kim, C.O. Griffiths, J. of Appl. Phys. 75, 5040 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    C.M. Herzinger, P.G. Snyder, B. Johs, J.A. Woollam, J. of Appl. Phys. 77, 1715 (1995)ADSCrossRefGoogle Scholar
  21. 21.
    S. Ozaki, S. Adachi, M. Sato, K. Ohtsuka, J. of Appl. Phys. 79, 439 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    M. Schubert, J.A. Woollam, G. Leibiger, B. Rheinlander, I. Pietzonka, T. Sab, V. Gottschalch, J. of Appl. Phys. 86, 2025 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    T. Hofmann, G. Leibiger, V. Gottschalch, I. Pietzonka, M. Schubert, Phys. Rev. B 64, 155206 (2001)Google Scholar
  24. 24.
    S. Zollner, J. Appl. Phys. 90, 515 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    Y.S. Ihn, T.H. Ghong, Y.D. Kim, S.J. Kim, D.E. Aspnes, T. Yao, B.H. Koo, J. Korean Phys. Soc. 42, S242 (2003)Google Scholar
  26. 26.
    S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V, and II-VI Semiconductors (Wiley, West Sussex, 2009)CrossRefGoogle Scholar
  27. 27.
    S. Zangooie, M. Schubert, D.W. Thompson, J.A. Woollam, Appl. Phys. Lett. 78, 937 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    M. Schubert, T. Hofmann, C.M. Herzinger, J. Opt. Soc. Am. A 20, 347 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    T. Hofmann, M. Schubert, G. Leibiger, V. Gottschalch, Appl. Phys. Lett. 90, 182110 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Reference spectra obtained from the J.A. Woollam Co. databaseGoogle Scholar
  31. 31.
    D.E. Aspnes, H.J. Stocker, J. Vac. Sci. Tech. 21, 413 (1982)ADSCrossRefGoogle Scholar
  32. 32.
    P. Lautenschlager, M. Garriga, S. Logothetidis, M. Cardona, Phys. Rev. B 35, 9174 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    S. Alterovitz, P.G. Snyder, K.G. Merkel, J.A. Woollam, D.C. Radulescu, L.F. Eastman, J. Appl. Phys. 63, 5081 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    H. Yao, P.G. Snyder, J.A. Woollam, J. Appl. Phys. 70, 3261 (1991)ADSCrossRefGoogle Scholar
  35. 35.
    G.F. Feng, R. Zallen, J.M. Epp, J.G. Dillard, Phys. Rev. B 43, 9678 (1991)ADSCrossRefGoogle Scholar
  36. 36.
    S. Zollner, M. Garriga, J. Kircher, J. Humlicek, M. Cardona, G. Neuhold, Phys. Rev. B 48, 7915 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    S. Zollner, Appl. Phys. Lett. 63, 2523 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    P.G. Snyder, N.J. Ianno, B. Wigert, S. Pittal, B. Johs, J.A. Woollam, Mater. Res. Soc. Symp. Proc. 378, 689 (1995)CrossRefGoogle Scholar
  39. 39.
    G.Y. Seong, C.Y. Bang, Y.D. Kim, J. Wang, D.E. Aspnes, B.H. Koo, T. Yao, J. Korean Phys. Soc. 39, S389 (2001)Google Scholar
  40. 40.
    I. Subedi, M. Slocum, D. Forbes, S. Hubbard, N.J. Podraza, Appl. Surf. Sci. 421, 813 (2017)Google Scholar
  41. 41.
    R.P. Lowndes, Phys. Rev. B 1, 2754 (1970)ADSCrossRefGoogle Scholar
  42. 42.
    A. Kasic, M. Schubert, S. Einfeldt, D. Hommel, T. Tiwald, Phys. Rev. B 62, 7365 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    M. Schubert, T.E. Tiwald, C.M. Herzinger, Phys. Rev. B 61, 8187 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons, and Polaritons (Springer, Berlin, 2004)Google Scholar
  45. 45.
    T.E. Tiwald, D.W. Thompson, J.A. Woollam, W. Paulson, R. Hance, Thin Solid Films 313–314, 661 (1998)CrossRefGoogle Scholar
  46. 46.
    T. Hofmann, C.M. Herzinger, J.L. Tedesco, D.K. Gaskill, J.A. Woollam, M. Schubert, Thin Solid Films 519, 2593 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    H.J. Stocker, D.E. Aspnes, Appl. Phys. Lett. 42, 85 (1983)ADSCrossRefGoogle Scholar
  48. 48.
    T. Trepk, M. Zorn, J.-T. Zettler, M. Klein, W. Richter, Thin Solid Films 313–314, 496 (1998)CrossRefGoogle Scholar
  49. 49.
    M. Ebert, K.A. Bell, S.D. Yoo, K. Flock, D.E. Aspnes, Thin Solid Films 364, 22 (2000)ADSCrossRefGoogle Scholar
  50. 50.
    J. Lee, P.I. Rovira, I. An, R.W. Collins, Rev. Sci. Instrum. 69, 1800 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    B. Johs, J.A. Woollam, C.M. Herzinger, J. Hilfiker, R. Synowicki, C.L. Bungay, SPIE Proc. CR 72, 29 (1999)Google Scholar
  52. 52.
    C. Chen, I. An, G.M. Ferreira, N.J. Podraza, J.A. Zapien, R.W. Collins, Thin Solid Films 455–456, 14 (2004)CrossRefGoogle Scholar
  53. 53.
    Y. Cong, I. An, K. Vedam, R.W. Collins, Appl. Opt. 30, 2692 (1991)ADSCrossRefGoogle Scholar
  54. 54.
    P. Aryal, A. Ibdah, P. Pradhan, D. Attygalle, P. Koirala, N.J. Podraza, S. Marsillac, R.W. Collins, J. Li, Prog. PV Res. Appl. 24, 1200 (2016)CrossRefGoogle Scholar
  55. 55.
    D.E. Aspnes, J. Opt. Soc. Am. A 10, 974 (1993)ADSCrossRefGoogle Scholar
  56. 56.
    H. Fujiwara, J. Koh, R.W. Collins, Thin Solid Films 313–314, 474 (1998)CrossRefGoogle Scholar
  57. 57.
    A.S. Ferlauto, G.M. Ferreira, R.J. Koval, J.M. Pearce, C.R. Wronski, R.W. Collins, M.M. Al-Jassim, K.M. Jones, Thin Solid Films 455–456, 665 (2004)CrossRefGoogle Scholar
  58. 58.
    N.J. Podraza, J. Li, C.R. Wronski, E.C. Dickey, M.W. Horn, R.W. Collins, Phys. Stat. Sol. A 205, 892 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics & AstronomyUniversity of ToledoToledoUSA

Personalised recommendations