• Hiroyuki FujiwaraEmail author
Part of the Springer Series in Optical Sciences book series (SSOS, volume 212)


Ellipsometry is an optical technique from which the optical constants (refractive indexn and extinction coefficient k), dielectric function and absorption coefficient (α) of materials are characterized. The performance of solar cells is essentially governed by the light absorption characteristics of semiconducting light absorbers incorporated into solar cells and the understanding of the absorber optical properties is crucial for the interpretation and improvement of the device performance. In particular, the optical processes in solar cells, including unfavorable light absorption and back-side reflection by a metal layer, are determined primarily by the optical constants of solar-cell component layers. Accordingly, accurate knowledge of the layer optical properties is essential to maximize solar-cell conversion efficiencies. From ellipsometry measurements, layer structures of solar cells can also be characterized non-destructively. In this chapter I review the fundamental principles and basic idea of the ellipsometry technique. This chapter will also provide an overview for the contents of subsequent chapters in this book.



The author acknowledges Shohei Fujimoto for the preparation of Fig. 1.6.


  1. 1.
    P. Drude, The Theory of Optics (Dover Phoenix Editions, NY, 1959)Google Scholar
  2. 2.
    E. Hecht, Optics, 4th edn. (Addison Wesley, San Francisco, 2002)Google Scholar
  3. 3.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)CrossRefGoogle Scholar
  4. 4.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (Elsevier Science B. V, Amsterdam, 1977)Google Scholar
  5. 5.
    H.G. Tompkins, W.A. McGahan, Spectroscopic Ellipsometry and Reflectometry: A User’s Guide (Wiley, New York, 1999)Google Scholar
  6. 6.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, West Sussex, UK, 2007)CrossRefGoogle Scholar
  7. 7.
    H.G. Tompkins, J.N. Hilfiker, Spectroscopic Ellipsometry: Practical Application to Thin Film Characterization (Momentum Press, New York, 2016)Google Scholar
  8. 8.
    H.G. Tompkins, E.A. Irene (eds.), Handbook of Ellipsometry (William Andrew, New York, 2005)Google Scholar
  9. 9.
    M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures: Phonons, Plasmons, and Polaritons (Springer, Heidelberg, 2004)Google Scholar
  10. 10.
    M. Losurdo, K. Hingerl (eds.), Ellipsometry at the Nanoscale (Springer, Heidelberg, 2013)Google Scholar
  11. 11.
    K. Hinrichs, K.-J. Eichhorn (eds.), Ellipsometry of Functional Organic Surfaces and Films (Springer, Heidelberg, 2014)Google Scholar
  12. 12.
    J.R. Tuttle, D. Albin, R.J. Matson, R. Noufi, J. Appl. Phys. 66, 4408 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    M. Shirayama, H. Kadowaki, T. Miyadera, T. Sugita, M. Tamakoshi, M. Kato, T. Fujiseki, D. Murata, S. Hara, T.N. Murakami, S. Fujimoto, M. Chikamatsu, H. Fujiwara, Phys. Rev. Applied 5, 014012 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Nat. Photon 9, 106 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, J.-H. Yum, M. Topič, S. De Wolf, C. Ballif, J. Phys. Chem. Lett. 6, 66 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Jiang, M.A. Green, R. Sheng, A. Ho-Baillie, Sol. Eng. Mater. Sol. Cells 137, 253 (2015)CrossRefGoogle Scholar
  17. 17.
    S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014)CrossRefGoogle Scholar
  18. 18.
    J.M. Ball, S.D. Stranks, M.T. Hörantner, S. Hüttner, W. Zhang, E.J.W. Crossland, I. Ramirez, M. Riede, M.B. Johnston, R.H. Friend, H.J. Snaith, Energy Environ. Sci. 8, 602 (2015)CrossRefGoogle Scholar
  19. 19.
    G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, S. Dharani, M. Grätzel, S. Mhaisalkar, T.C. Sum, Nat. Mater. 13, 476 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Chem. Mater. 27, 3397 (2015)CrossRefGoogle Scholar
  21. 21.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Science 342, 344 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, Energy Environ. Sci. 7, 399 (2014)CrossRefGoogle Scholar
  23. 23.
    H.S. Jung, N.-G. Park, Small 11, 10 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Fujiwara, S. Fujimoto, M. Tamakoshi, M. Kato, H. Kadowaki, T. Miyadera, H. Tampo, M. Chikamatsu, H. Shibata, Appl. Surf. Sci. 421, 276 (2016)Google Scholar
  25. 25.
    H. Fujiwara, J. Koh, P.I. Rovira, R.W. Collins, Phys. Rev. B 61, 10832 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    G.E. Jellison Jr., F.A. Modine, P. Doshi, A. Rohatgi, Thin Solid Films 313–314, 193 (1998)CrossRefGoogle Scholar
  27. 27.
    V. Ranjan, T. Begou, S. Little, R.W. Collins, S. Marsillac, Prog. Photovolt. 22, 77 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Minoura, T. Maekawa, K. Kodera, A. Nakane, S. Niki, H. Fujiwara, J. Appl. Phys. 117, 195703 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986)zbMATHGoogle Scholar
  30. 30.
    P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, M. Powalla, Phys. Status Solidi RRL 9, 28 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gifu UniversityGifuJapan

Personalised recommendations