Gigantic Cities and the New Challenge of an Old Science: Geoethics, Geoeducation, and Geoknowledge in Porto Alegre, Brazil

Chapter
Part of the The Latin American Studies Book Series book series (LASBS)

Abstract

In the present time, we are facing new challenges that require us to review the role of Geology to the material, cognitive and ethic progress of humankind. The vertiginous population growth, urban sprawl, increasing demand for solid, liquid, and gaseous geosphere, the collapse of the ecosystems that support life and the climate change replace Geology as one of the most important contemporary sciences. We need to review procedures, analytical scales and contribute to civilization process. Essentially, we need Geology help develop a deep Geoethic on the use of land resources, care with the geosphere, and mankind sustainability. The Geoethic emerges as a new understanding that cleaves across all geological activities, whether of scientific practice, or the practice of exploitation of natural resources, and or also the knowledge of how geodynamics affects cities and human activities and vice versa. At the root of contemporary environmental and urban problems, whether planetary or local is how the city is perceived by its inhabitants, managers, and intelligentsia. The ascent of urban realm in the next 30 years is expected to almost duplicate the nowadays 3.6 billion inhabitants. The central challenge for the geology and Geoethics is to consider the many problems due to the complex relations between the large urban needs and geolandscape transformations. The main goal of this chapter is to describe the ascent of cities’ scales—from city and megacity to megalopolis and ecumenopolis—in order to describe connections between the physical world-city and the superficial components of the Earth systems. The techno-urbansphere is defined as the urban physical totality, which includes the man-made system and the lithosphere, hydrosphere, atmosphere, and biosphere’s portions transformed by it. Due to geologic scale of the techno-urbansphere, it is not possible to observe it by a citizen without technical and Earth science concepts and instruments. To offer to citizens and decisions makers accurate instruments to understand the nowadays urban geocomplexities, thematic surveys of the urban physical totality are very important. This possibility is illustrated by the Environmental Atlas of Porto Alegre case, which triggered new looks in urban environmental management, geoethics and geoeducation in Porto Alegre city, Southern Brazil.

Keywords

Urban sprawl Geohazard Urban sustainability Geoethic culture Urban geological scale Urban environmental management Geosphere Techno-urbansphere 

Notes

Acknowledgements

We would like to thank to Rogelio D. Acevedo and Jesús Martínez-Frías, general editors, for the kind invitation to take part of this enterprise. Also, to thank to the reviser for many suggestions those improve this chapter. Equally, thanks to Romulo Machado (USP), Celso Dal Ré Carneiro (Unicamp), the Environmental Atlas of Porto Alegre’s team, students and teachers of Municipal Schools of Porto Alegre City that construct ILUE day by day. Finally, thanks to CNPq for research support.

References

  1. Abramovitz J (2001) Unnatural disasters. Worldwatch Institute, Washington, p 62Google Scholar
  2. Acebillo J, Folch R (2000) Atles Ambiental de l’àrea de Barcelona; balanç de recursos i problemas. Editorial Ariel, Barcelona, p 439Google Scholar
  3. Adler FR, Tanner CJ (2013) Urban ecosystems: ecological principles for the built environment. Cambridge University Press, Cambridge, UK, p 353CrossRefGoogle Scholar
  4. Alasiewicz JZ, Crutzen P, Steffen W (2012) The Anthropocene. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012. Elsevier, Amsterdam, pp 1033–1040Google Scholar
  5. Angel S (2012) Planet of cities. Lincoln Institute of Land Policy, Cambridge, p 360Google Scholar
  6. Angel S, Parent J, Civco DL, Blei AM (2012) Atlas of urban expansion. Lincoln Institute of Land Policy, Cambridge, p 397Google Scholar
  7. Barker T, Sutcliffe A (1993) Megalopolis: the giant city in history. Palgrave Macmillan, New York, p 228CrossRefGoogle Scholar
  8. Bartlett S, Sattethwaite D (eds) (2016) Cities on a finite planet: towards transformative responses to climate change. Earthscan, Routledge, New York, p 306Google Scholar
  9. Barros MVF, Archela RS, Barros OF, Théry H, Mello NA, Gratão LHB (2007) Atlas ambiental da cidade de Londrina. Universidade Estadual de Londrina, Londrina. Available on http://www.uel.br/atlasambiental. Accessed on 10 June 2008
  10. Batty M (2013) The new science of cities. MIT Press, Massachusetts, p 520Google Scholar
  11. Batty M, Longley P (1994) Fractal cities; A geometry of form and function. Academic Press Lim, London, p 394Google Scholar
  12. Bell G, Tyrwhitt J (1972a) Human identity in the urban environment. Penguin Books, Harmondsworth, p 656Google Scholar
  13. Bell G, Tyrwhitt J (1972b). The example of the Tokaido Megalopolis. In: Bell G, Tyrwhitt J (eds) Human identity in the urban environment. Penguin Books, Harmondsworth, pp 533–540Google Scholar
  14. Brinkhoff T (2015) The principal agglomerations of the world. In: Agglomerations of the world, available on http://www.citypopulation.de. Accessed on 15 June 2015
  15. Carson R (1962) Silent Spring. Houghton Mifflin, Boston, p 368Google Scholar
  16. Carvalho,ET de (1999) Geologia urbana para todos: uma visão de Belo Horizonte. ET Carvalho, Belo Horizonte, 175 ppGoogle Scholar
  17. Chew SC (2001) World ecological degradation; accumulation, urbanization, and deforestation 3000 B.C.–A.D. 2000. AltaMira Press, Walmut Creek, CA, 216 ppGoogle Scholar
  18. Chrysoulakis N, Castro EA (eds) (2014) Understanding urban metabolism: a tool for Urban Planning. Routledge, London, p 240Google Scholar
  19. Coch NK (2004) Geohazards natural and human. Copley Custom Textbooks, Boston, p 480Google Scholar
  20. Crossland CJ, Kremer HH, Lindeboom HJ, Crossland JIM, Le Tissier MDA (2005) Coastal fluxes in the Anthropocene: the land-ocean interactions in the coastal zone. (Project of the International Geosphere-Biosphere Programme; Global Change—The IGBP Series). Springer, Berlin, p 232CrossRefGoogle Scholar
  21. Dashwood HS (2014) The rise of global corporate social responsibility: mining and the spread of global norms. Cambridge University Press, Cambridge, p 336Google Scholar
  22. Dewan A (2013) Floods in a megacity: geospatial techniques in assessing hazards risk and vulnerability. Springer, Berlin, p 199CrossRefGoogle Scholar
  23. Distrito Federal DF (2006) Atlas Ambiental do Distrito Federal. Governo do Distrito Federal, Brasília, 56 ppGoogle Scholar
  24. Dickinson JL, Bonney R (2012) Citizen science: public participation in environmental research. Cornell University Press, Ithaca, p 304CrossRefGoogle Scholar
  25. Dogan M, Kasarda JD (eds) (1988a) The metropolis Era: a world of giant cities, vol 1. Sage, London, p 394Google Scholar
  26. Dogan M, Kasarda JD (eds) (1988b) The metropolis Era: mega-cities, vol 2. Sage, London, p 322Google Scholar
  27. Dogan M, Kasarda JD (1988c) Introduction: how giant cities will multiply and grow. In: Dogan M, Kasarda JD (eds) The metropolis Era: a world of giant cities, vol 1. Sage, London, pp 12–29Google Scholar
  28. Dorst JA (1965) Before nature dies. Houghton Mifflin Company, Boston, p 352Google Scholar
  29. Doxiadis CA (1967) The coming world-city: ecumenopolis. In: Toynbee A (ed) Cities of destiny. McGraw-Hill, New York, pp 336–358Google Scholar
  30. Doxiadis CA (1968) Ekistics: an introduction to the science of human settlements. Hutchinson, London, p 527Google Scholar
  31. Doxiadis CA, Papaioannou JG (1974) Ecumenopolis: the inevitable city of the future. Publishing Center, Athens, Athens, p 368Google Scholar
  32. FATMA, Fundação do Meio Ambiente de Santa Catarina (2002) Atlas Ambiental da Região de Joinvile; complexo hídrico da Baía da Babitonga. Fatma: GTZ, Joinvile, 68 ppGoogle Scholar
  33. Fischer F (2000) Citizens, experts, and the environment: the politics of local knowledge. Duke University Press Books, London, p 352CrossRefGoogle Scholar
  34. Fleming F (ed) (1991) The rise of cities. Time-Life Books, New York, 176 ppGoogle Scholar
  35. Frieling DH (2000) Deltametropolis. In: Vereniging Deltametropool, available on http://www.deltametropool.nl/v1/pages/english/Deltametropolis.php. Accessed on 12 July 2015
  36. Fyfe WS (1991) Our planet observed: the assault by Homo sapiens. In: Mungall C, Mclaren DJ (eds) Planet under stress; the challenge of global change. Oxford University Press, Oxford, pp 1–29Google Scholar
  37. Geddes P (1915) Cities in evolution: an introduction to the town planning movement and to the study of civics. Williams and Norgate, London, p 232Google Scholar
  38. Geikie A (1901) The scenery of Scotland viewed in connection with its physical geology. Macmillan, London, p 580Google Scholar
  39. Geikie A (2009[1909]) Darwin as geologist. Cambridge University Press, Cambridge, 100 ppGoogle Scholar
  40. Gilbert A (ed) (1996) The mega-city in Latin America. United Nations University Press, Tokyo, p 482Google Scholar
  41. Girardet H (1992) The Gaia Atlas of cities; new directions for sustainable urban living. Gaia Books, London, p 191Google Scholar
  42. Glass M (2015) Conflicting spaces of governance in the imagined Great Lakes megaregion. In: Thün G, Velikov K, McTavish D, Ripley C (eds) Infra Eco Logi Urbanism: a project for the Great Lakes Megaregion. Park Books, Zürich, 192 ppGoogle Scholar
  43. Gottdiener M, Hutchison R (2006) The new urban sociology, 3rd edn. Westview Press, New York, p 432Google Scholar
  44. Gottman J (1961) Megalopolis; The urbanized Northeastern seaboard of United States. Twentieth Century Fund, New York, 810 ppGoogle Scholar
  45. Gottman J, Harper R (1990) Since Megalopolis: the urban writings of Jean Gottman. University Press, Johns Hopkins, p 304Google Scholar
  46. Goudie A (2000) The human impact on the natural environment, 5th edn. MIT Press, Cambridge, p 511Google Scholar
  47. Grier CH, Feckes M, Bald K (2002) Comparative analysis of the Rhine-Ruhr Metropolitan Region. Düsseldorf Regional Government, Düsseldorf, p 31Google Scholar
  48. GSC, Geological Survey of Canada (2008) Urban geology. GSC, Ottawa. Available on http://gsc.nrcan.gc.ca/urbgeo/index_e.php. Accessed on 10 June 2008
  49. Hardoy JE, Mitlin D, Satterthwaite D (2001) Environmental problems in an urbanizing world. Earthscan, London, p 448Google Scholar
  50. Harrison J, Hoyler M (2015a) Megaregions: globalization’s new urban form?. Edward Elgar Pub, Northampton, p 288CrossRefGoogle Scholar
  51. Harrison J, Hoyler M (2015b) Megaregions: foundations, frailties, future. In: Harrison J, Hoyler M (eds) Megaregions: globalization’s new urban form? Edward Elgar Pub., Northampton, pp. 1–28Google Scholar
  52. Herbert S (2005) Charles Darwin Geologist. Cornell University, Cornell, p 512Google Scholar
  53. Hibbert C (1987) Rome: the biography of a city. Penguin, Harmondsworth, p 387Google Scholar
  54. Hodder I (ed) (2013) Substantive technologies at Çatalhöyük: reports from the 2000-2008 seasons. Har. Com, Ankara, p 544Google Scholar
  55. Hough M (1989) City form and natural process. Routledge, New York, p 304Google Scholar
  56. Irina N, Stückelberger C (2014) Mining ethics and sustainability: papers from the World Mining Congress 2013. Globethics.net, Geneva, p 198Google Scholar
  57. Irwin A (1995) Citizen science: a study of people, expertise and sustainable development. Routledge, New York, p 216Google Scholar
  58. Ito T (1980) Tokaido Megalopolis of Japan. GeoJournal 4(3):231–246CrossRefGoogle Scholar
  59. Karvounis A (2015) Urban metabolism. In: Chrysoulakis N, Castro EAde, Moors EJ (eds) Understanding urban metabolism: a tool for urban planning. Routledge, London, pp 03–12Google Scholar
  60. King HA, Carpenter B, Wilson N (2007) Hazard city: assignments in applied geology. Prentice-Hall, New York, CD-ROMGoogle Scholar
  61. Knox P, Florida R (eds) (2014) Atlas of Cities. Princeton University Press, Princeton, p 256Google Scholar
  62. Kraas F, Aggarwal S, Coy M, Mertins G (eds) (2014) Megacities; Our global urban future. Springer, Heidelberg, p 225Google Scholar
  63. Lakshmanan TR, Anderson WP, Song Y (2015) Knowledge Economy in the Megalopolis: Interactions of innovations in transport, information, production and organizations. Routledge, New York, p 228Google Scholar
  64. Legget RF (1973) Cities and geology. McGraw-Hill, New York, p 624Google Scholar
  65. Leveson D (1980) Geology and the urban environment. Oxford University Press, Oxford, p 386Google Scholar
  66. Lietzke B, Vogt R, Young DT, Grimmond CSB (2015) Physical fluxes in the urban environment. In: Chrysoulakis N, Castro EA de, Moors EJ (eds) Understanding urban metabolism: a tool for urban planning. Routledge, London, pp 29–44Google Scholar
  67. Lovelock JE (1979) Gaia: a new look of life on Earth. Oxford University Press, Oxford, p 170Google Scholar
  68. Lowder S (1987) Inside the third world city. Croom Helm, London, p 420Google Scholar
  69. Lüttich H (2010) Metropolitan regions all over the EU. Books on Demand, Norderstedt, p 284Google Scholar
  70. Lynch K (1960) The Image of the City. MIT Press, Massachusetts, p 194Google Scholar
  71. Mayhew S, Penny A (1992) The concise Oxford dictionary of Geography. Oxford University Press, Oxford, p 186Google Scholar
  72. McGill JT (1964) Growing importance of urban geology. United States Geological Survey, Washington, Circular, p 487Google Scholar
  73. Meadows DH, Meadows DL, Randers J, Behrens WW III (1972) The limits to growth. Signet, New York, p 207Google Scholar
  74. Menegat E (2003) Limites do Ocidente; um roteiro para o estudo da crise de formas e conteúdos urbanos. Tese de Doutorado, Programa de Pós-Graduação em Planejamento Urbano e Regional, Universidade Federal do Rio de Janeiro, 229 ppGoogle Scholar
  75. Menegat M (2006) O olho da barbárie. Expressão Popular, São Paulo, p 351Google Scholar
  76. Menegat R (2000) Educação ambiental integrada: o exemplo do Atlas Ambiental de Porto Alegre. In: A. Krug (org.) Utopia e democracia os inéditos viáveis na educação cidadã. Edufrgs, Porto Alegre, pp 507–522Google Scholar
  77. Menegat R (2002a) Participatory democracy and sustainable development: integrated urban environmental management in Porto Alegre, Brazil. Environ Urbanization 2:181–206CrossRefGoogle Scholar
  78. Menegat R (2002b) Participatory democracy in Porto Alegre, Brazil. Participatory Learning and Action (PLA) 44:8–11Google Scholar
  79. Menegat R (2008a) The discovery of the modern Earth by René Descartes: the difficult scientific revolution of the terrestrial spheres. Boletim Geociências Petrobras, V.16, No.2, p. 421–453, may/nov. 2008Google Scholar
  80. Menegat R (ed) (2008b) Visões da Terra, entre deuses e máquinas,qual o lugar da humanidade no mundo em que vivemos. Museu da Ufrgs, Porto Alegre, 96 ppGoogle Scholar
  81. Menegat R, Carraro CC (2009) Manual para saber por que o Guaíba é um lago. Armazém Digital, Porto Alegre, p 113Google Scholar
  82. Menegat R, Fernandes LAD, Koester E, Scherer CMS (1998) Porto Alegre antes do Homem: evolução geológica. In: Menegat R, Porto ML, Carraro CC, Fernandes LAD (eds) Atlas Ambiental de Porto Alegre. Edufrgs, Porto Alegre, pp 11–20Google Scholar
  83. Menegat R, Porto ML, Carraro CC, Fernandes LAD (eds) (2000) Environmental Atlas of Porto Alegre. Condensed English Version. Edufrgs, Porto Alegre, p 60Google Scholar
  84. Menegat R, Porto ML, Carraro CC, Fernandes LAD (eds) (2006) Atlas Ambiental de Porto Alegre, 3rd edn. Edufrgs, Porto Alegre, p 256Google Scholar
  85. Meuser H (2010) Contaminated urban soils. Springer, Heidelberg, p 318CrossRefGoogle Scholar
  86. Mitchell JG, Leen S (2001) Urban Sprawl. National Geographic 200(1):48–73Google Scholar
  87. Montgomery MR, Stren R, Cohen B, Reed HE (eds) (2004) Cities transformed: demographic change and its implications in the developing world (Panel on Urban Population Dynamics). Earthscan, London, p 529Google Scholar
  88. Morelli AF (ed) (2007) Atlas Ambiental de São José dos Campos. Universidade do Vale do Paraíba, São José dos Campos. Available on https://sites.google.com/site/atlasambientalsjc/Home. Accessed on 06 June 2015
  89. MPA, Municipalidad Provincial de Arequipa (2001) Atlas Ambiental de Arequipa. Municipalidad Provincial de Arequipa, Arequipa, 130 ppGoogle Scholar
  90. MPL, Municipalidad Provincial de Lima (2008) Atlas Ambiental de Lima. Municipalidad Provincial de Lima, Lima, 240 ppGoogle Scholar
  91. MPT, Municipalidad Provincial de Trujillo (2002) Atlas Ambiental de la Ciudad de Trujillo. Municipalidad Provincial de Trujillo, Trujillo, 121 ppGoogle Scholar
  92. Mumford L (1938) The culture of cities. Harvest/BJ, New York, p 586Google Scholar
  93. Mumford L (1944) The Condition of Man. Harcourt, Brace and World, New York, 467 ppGoogle Scholar
  94. Mumford L (1961) The city in history; its origins, its transformations, and its prospects. Harcourt, Brace and World, New York, 657 ppGoogle Scholar
  95. Mumford L (1964) The Myth of the machine. Harccourt Brace Jovanovich, New York, p 496Google Scholar
  96. Nabel PE, Kullock D (2006a) Atlas Ambiental de Buenos Aires. Centro de Investigaciones Geoambientales del Museo Argentino de Ciencias Naturales-CONICET, Buenos Aires, p 111Google Scholar
  97. Nabel PE, Kullock D (2006b). Atlas Ambiental de Buenos Aires. Available on http://www.atlasdebuenosaires.gov.ar/. Accessed on 15 June 2008
  98. Nagashima C (1972) Megalopolis in Japan. In: Bell G, Tyrwhitt J (eds). Human identity in the urban environment. Penguin Books, Harmondsworth, pp 541–556Google Scholar
  99. National Geographic Society (1992) National geographic atlas of the world, 6th edn. National Geographic Society, Washington, 136 ppGoogle Scholar
  100. National Geographic Society (1994) Boston to Washington Megalopolis. Map 1:1,000,000Google Scholar
  101. OECD (2015) Urban policy reviews: China 2015. OECD Publishing, Paris, p 243Google Scholar
  102. Okata J, Murayama A (2011) Tokyo’s urban growth, urban form and sustainability. In: Sorensen A, Okata J (eds) Megacities: urban form, governance, and sustainability. New York, Springer, pp 15–42Google Scholar
  103. Oliveira R (2014) Optimization of large civil engineering projects from an environmental point of view. In: Lollino G, Arattano M, Giardino M, Oliveira R, Peppoloni S (eds) Engineering Geology for Society and Territory. Springer, New York, pp 01–10Google Scholar
  104. Paccini P, Brunner PH (2012) Metabolism of the Antroposphere. MA, MIT Press, Cambridge, p 392Google Scholar
  105. Papaioannou JG (1964) The city of the future: population projections for Ecumenopolis. Athens Center of Ekistics, Athens, p 186Google Scholar
  106. Park RE, Burgess E, Mckenzie R (1925) The City. University of Chicago Press, Chicago, p 342Google Scholar
  107. Pelling M, Blackburn S (2014) Megacities and the coast; Risk, resilience and transformation. Routledge, London, p 272Google Scholar
  108. Peloggia AUG (1998) O homem e o ambiente geológico; geologia, sociedade e ocupação urbana no Município de São Paulo. Xamã, São Paulo, 1998, p 271Google Scholar
  109. Pésci RO (2006) Vientos verdes: veinte ideas sobre la sustentabilidad. Nobuki, Buenos Aires, p 166Google Scholar
  110. PMA, Prefeitura Municipal de Araquara (2004) Atlas Urbano e Ambiental de Araraquara. Prefeitura Municipal de Araraquara; UFSCAR; UNESP, AraraquaraGoogle Scholar
  111. PMPA-DMAE, Prefeitura Municipal de Porto Alegre. Departamento Municipal de Água e Esgotos (2015) Apresentação. Available on http://www2.portoalegre.rs.gov.br/dmae/default.php?p_secao=318. Accessed on 10 June 2015
  112. PMR, Prefeitura Municipal de Recife (1999) Atlas Ambiental de Recife. Prefeitura Municipal de Recife, Fundo Municipal do Meio Ambiente, Recife, 180 ppGoogle Scholar
  113. PMS, Prefeitura Municipal de Salvador (2006) Atlas Ambiental infanto-juvenil de Salvador; e diretrizes da educação ambiental. Prefeitura Municipal de Salvador, Salvador, 86 ppGoogle Scholar
  114. PMSP, Prefeitura Municipal de Santana de Parnaíba. Atlas Ambiental de Santana de Parnaíba. Santana de Parnaíba, 190 ppGoogle Scholar
  115. Reps JW (1998) Bird’s eye views; historic lithographs of North American Cities. Princeton Architectural Press, New York, p 116Google Scholar
  116. Romagnano LFT.di, Oliveira RFB (2012) Atlas Ambiental de Santana de Itanhaém. Prefeitura Municipal de Itanhaém, Itanhaém, 130 ppGoogle Scholar
  117. Sattler MA (2004) Edificações sustentáveis: interface com a natureza do lugar. In: Menegat R, Almeida G (eds). Desenvolvimento sustentável e gestão ambiental nas cidades; estratégias a partir de Porto Alegre. Edufrgs, Porto Alegre, pp 259–288Google Scholar
  118. Saraceni V, Seibel F (eds) (2008) Atlas Ambiental de Bebedouro. Vistadivina, São Paulo, p 108Google Scholar
  119. Saraceni V (ed) (2010) Atlas Ambiental de São Sebastião. Vistadivina, São Paulo, p 115Google Scholar
  120. Sepe PN, Takia H (eds) (2004) Atlas Ambiental de São Paulo. Prefeitura Municipal de Secretaria Municipal do Verde e Meio Ambiente, São Paulo; 266 ppGoogle Scholar
  121. Serres M (2002) Origins of geometry. Clinamen Press, Manchester, p 256Google Scholar
  122. Short JR (2007) Liquid City: Megalopolis and the Contemporary. Routledge, Washington, p 200Google Scholar
  123. Silva E, Sá AA, Roxo MJ (2015) From Planet Earth to society: a new dynamic in Portugal concerning geoscience education and outreach activities. In: Peppoloni S, Capua G, Di (eds). Geoethics: the role and responsibility of geoscientists. Geological Society, London, pp 141–148Google Scholar
  124. Smith GA, Gruenewald DA (eds) (2007) Place-based education in the global age: local diversity. Routledge, New York, p 408Google Scholar
  125. Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380CrossRefGoogle Scholar
  126. Theodorson GA (1982) Urban patterns; studies in human ecology. Pennsylvania State University Press, Philadelphia, p 470Google Scholar
  127. Thierstein A, Förste A (eds) (2008) The image and the region—making Mega-City Regions Visible! Lars Müller Publishers, Baden, Switzerland, 288 ppGoogle Scholar
  128. Thün G, Velikov K, McTavish D, Ripley C (2015) Infra Eco Logi Urbanism: a project for the Great Lakes Megaregion. Park Books, Zürich, p 192Google Scholar
  129. Toynbee A (1967) Cities in history. In: Toynbee A (ed) 1967. Cities of destiny, McGraw-Hill, New York, pp 11–28Google Scholar
  130. Tucci CEM (2006) Água no meio urbano. In: Rebouças AC, Braga B, Tundisi JG (eds) Águas doces no Brasil; capital ecológico, uso e conservação. Escrituras, São Paulo, pp 399–432Google Scholar
  131. United Nations, Department of Economic and Social Affairs. Population Division (1985) Estimates and projections of urban, rural, and city populations, 1950-2025: the 1982 assessment. UN, New York, 198 ppGoogle Scholar
  132. United Nations, Department of Economic and Social Affairs. Population Division (1986) Population growth and policies in mega-cities: Seoul. Population Policy, Paper n.4. UN, New York, 43 ppGoogle Scholar
  133. United Nations, Department of Economic and Social Affairs. Population Division (2007) World population prospects: The 2006 revision; executive summary. UN, New York, 32 ppGoogle Scholar
  134. United Nations, Department of Economic and Social Affairs. Population Division (2009) World Population Prospects: The 2008 Revision. Working Paper No. ESA/P/WP.210. UN, New York, 32 ppGoogle Scholar
  135. United Nations, Department of Economic and Social Affairs. Population Division (2015) World Urbanization Prospects: The 2014 Revision. UN, New York, 493 ppGoogle Scholar
  136. Vai GB (2004) Il testamento di Ulisse Aldrovandi e l’introduzione della parola ‘Geologia’ nel 1603. In: Vai GB, Cavazza W (eds) Quadricentenario della parola Geologia; Ulisse Aldrovandi, 1603, Bologna. Bologna, Minerva Edizioni, pp 65–110Google Scholar
  137. Vanhaverbeke W (1998) An economic analysis of the Flemish Diamond. Eur Plan Stud 6(4):425–442CrossRefGoogle Scholar
  138. Wackernagel M, Rees W (1996) Our ecological footprint. New Society Pub, Gabriola Island, p 160Google Scholar
  139. Welter VM (2003) Biopolis: Patrick Geddes and the City of Life. MIT Press, Cambridge, p 379Google Scholar
  140. Williams M (1992) Americans and their forests. Cambridge University Press, Cambridge, p 624Google Scholar
  141. Williams M (2002) Deforesting the Earth: from prehistory to global crisis. Chicago University Press, Chicago, p 715Google Scholar
  142. World Bank (2015) East Asia’s Changing Urban Landscape: Measuring a Decade of Spatial Growth. Urban Development Series, World Bank, Washington, DC, p 180CrossRefGoogle Scholar
  143. Yang J (2009) Spatial planning in Asia: planning and developing megacities and megaregions. In: Ross CL (ed) Megaregions: planning for global competitiveness. Island Press, Washington, DC, pp 35–52Google Scholar
  144. Zellner P, Ruby A (eds) (2000) Southern California: a megalopolis in the making. G. B. Intl, New York, p 340Google Scholar
  145. Zevenbergen C, Cashman A, Evelpidou N, Pasche E, Garvin S, Ashley R (2010) Urban Flood Management. CRC Press, Boca Raton, FL, p 340Google Scholar
  146. Zhang X (2015b) Globalization and the megaregion: investigating the evolution of the Pearl River Delta in a historical perspective. In: Harrison J, Hoyler M (eds) Megaregions: globalization’s new urburban form? Edward Elgar Pub., Northampton, pp175–199Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de GeociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.International Association for Geoethics (IAGETH), Brazilian ChapterPorto AlegreBrazil
  3. 3.Foro Latino-Americano de Ciencias Ambientales (FLACAM), Cátedra UNESCO/Unitwin para el Desarrollo SustentableCiudad de La PlataArgentina

Personalised recommendations