Investigation of Lignosulfonate Adsorption on Zinc Materials in Acidic Media

  • E. Kolmachikhina
  • S. Naboychenko
Part of the Innovation and Discovery in Russian Science and Engineering book series (IDRSE)


Surfactant application in hydrometallurgical technologies intensifies leaching and electrolysis processes. Lignosulfonates proved their effectiveness in oxidative pressure leaching of zinc sulfide concentrates. Lignosulfonates act as dispersing agents, removing impactful molten sulfur layer from the mineral surface during leaching. However, lignosulfonate application has negative influence on further processes of purification from Cl, Fe, Cu, Ni, and Co. This phenomenon might be related to incorrect reagent dosage. In this paper, the adsorption mechanism was investigated by two different lignosulfonates on surfaces of natural sphalerite and zinc concentrate. Characteristics of adsorption change versus sulfuric acid concentration variation and adsorption isotherm were acquired. It is shown that lignosulfonate adsorption depends significantly on lignosulfonate composition, lignosulfonate and sulfuric acid concentration, and adsorbent nature.


Lignosulfonate Leaching Adsorption Adsorption isotherm Surfactant 


  1. 1.
    Trufanova, M. V., Parfenova, L. N., & Yarygina, O. N. (2010). Poverhnostno-aktivnye svojstva lignosul’fonatov. Zhurnal prikladnoj himii, 6(82), 1041–1043.Google Scholar
  2. 2.
    Telysheva, G. M., & Afanas’ev, N. I. (1990). Poverhnostno-aktivnye svojstva vodnyh rastvorov lignosul’fonatov. Himiya drevesiny, 1, 3–19.Google Scholar
  3. 3.
    Sadykov, S. B. (2006). Avtoklavnaya pererabotka nizkosortnyh cinkovyh koncentratov (pp. 321–324). Yekaterinburg: UrO RAN.Google Scholar
  4. 4.
    Shneerson, Y. M., Onackaya, A. A., & Krasnov, A. L. (1982). Primenenie poverhnostno-aktivnyh veshchestv pri avtoklavnom vyshchelachivanii pirrotinovyh koncentratov. Tsvetnye metally, 7, 26–30.Google Scholar
  5. 5.
    Tong, L., & Dreisinger, D. (2009). The adsorption of sulfur dispersing agents on sulfur and nickel sulfide concentrate surfaces. Minerals Engineering, 22, 445–450.CrossRefGoogle Scholar
  6. 6.
    Naftal’, M. N., Nabojchenko, S. S., & Lugovickaya, T. N. (2014). PAV v avtoklavnoj gidrometallurgii tsvetnyh metallov (pp. 263–267). Yekaterinburg: UIPC.Google Scholar
  7. 7.
    Owusu, G., & Dreisinger, D. B. (1996). Interfacial properties determinations in liquid sulfur, aqueous zinc sulfate and zinc sulfide systems. Hydrometallurgy, 43, 207–218.CrossRefGoogle Scholar
  8. 8.
    Bera, A., Kumar, T., Ojha, K., & Mandal, A. (2013). Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies. Applied Surface Science, 284, 87–99.CrossRefGoogle Scholar
  9. 9.
    Owusu, G (1993). The role of surfactants in the leaching of zinc sulphide minerals at temperatures at temperatures above the melting point of sulphur. PhD thesis, University of British Columbia, Vancouver.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of New Materials and TechnologiesUral Federal UniversityYekaterinburgRussia

Personalised recommendations