Skip to main content

Polarization Control by Deep Ultra Violet Wire Grid Polarizers

  • Chapter
  • First Online:
Optical Characterization of Thin Solid Films

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 64))

Abstract

Polarization is an inherent property of transversal electromagnetic light waves. Hence, the control of the polarization state is a fundamental requirement in many optical applications. Nowadays, optical measurement and fabrication technology strive to shorter wavelengths in the ultra violet to benefit from larger resolution and material specific electronic transitions used for analysis. Thanks to the progress of nano-technology it has become feasible to manufacture subwavelength devices such as wire grid polarizers for this wavelength regime. These elements offer a very large acceptance angle, large areas and can be integrated with other optical elements such as photo masks or image sensors. However, not only geometrical properties must be met, but also specific materials properties must be provided. In this chapter the principle concepts of polarizers basing on birefringence, reflection and dichroism are very briefly explained and their limitations are discussed. An overview of commercially available elements is given to set wire grid polarizer in a bigger picture and the characterization of polarizing elements is described. Further the working principle, structural and material requirements for wire grid polarizer are discussed in detail. The fabrication and design is presented. The transmittance spectra of fabricated elements exhibit resonances in the near ultra violet spectral region. It is discussed how these can be utilized to reconstruct the geometry and deduce the performance of the polarizers at much shorter, less accessible, wavelengths in the far ultra violet. Finally, a comparison of different materials for wire grid polarizers in the ultra violet wavelength range is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Andriy, R. Matthieu, T.F. Ari, T. Setälä, Polarization time of unpolarized light. Optica 4(1), 64–70 (2017)

    Google Scholar 

  2. K. Asano, S. Yokoyama, A. Kemmochi, T. Yatagai, Fabrication and characterization of a deep ultraviolet wire grid polarizer with a chromium-oxide subwavelength grating. Appl. Opt. 53, 2942–2948 (2014)

    Google Scholar 

  3. G.R. Bird, M. Parrish Jr, The wire grid as a near-infrared polarizer. J. Opt. Soc. Am. 9(50), 886–891 (1960)

    Google Scholar 

  4. M. Born, E. Wolf, Principles of Optics, 7th(expanded) edn. (n.d.)

    Google Scholar 

  5. Y. Bourgin, T. Siefke, T. Käsebier, P. Genevée, A. Szeghalmi, E.-B. Kley, U.D. Zeitner, Double-sided structured mask for sub-micron resolution proximity i-line mask-aligner lithography. Opt. Express 23(13), 16628–16637 (2015)

    Google Scholar 

  6. Y. Bourgin, T. Siefke, T. Käsebier, P. Genevée, A. Szeghalmi, E.-B. Kley, U.D. Zeitner, Double-sided diffractive photo-mask for sub-500 nm resolution proximity i-line mask-aligner lithography, in SPIE Proceedings, vol. 9426, 94260E (2015)

    Google Scholar 

  7. W. Demtröder, Experimentalphysik 2. (Springer Spektrum, Berlin, 2013)

    Google Scholar 

  8. D. Flagello, B. Geh, S. Hansen, M. Totzeck, Polarization effects associated with hyper-numerical-aperture (> 1) lithogrphy. J. Micro/Nanolith. MEMS MOEMS. 4, 3 (2005)

    Google Scholar 

  9. M. Fox, Optical Properties of Solid, 2nd edn. (Oxford University Press, Oxford, 2010)

    Google Scholar 

  10. D. Franta, I. Ohlídal, Optical characterization of inhomogeneous thin films of ZrO2 by spectroscopic ellipsometry and spectroscopic reflectometry. Surf. Interface Anal. 30, 574–579 (2000)

    Google Scholar 

  11. D. Franta, I. Ohlídal, P. Klapetek, P. Pokorný, Characterization of the boundaries of thin films of TiO2 by atomic force microscopy and optical methods. Surf. Interface Anal. 34, 759–762 (2002)

    Google Scholar 

  12. E. Hecht, Optik. Oldenbourg: Oldenbourg Wissenschaftsverlag (2009)

    Google Scholar 

  13. H. Hertz, Ueber Strahlen elektrischer Kraft. Koeniglich Preussische Akademie der Wissenschaften (1888)

    Google Scholar 

  14. G.E. Jellison, F.A. Modine, Parameterization of the optical functions of amorphous materials in the interband. Appl. Phys. Lett. 69, 371–373 (1996)

    Google Scholar 

  15. B. Kahr, K. Claborn, The lives of Malus and his bicentennial law. ChemPhysChem 9, 43–58 (2008)

    Google Scholar 

  16. E.-B. Kley, H. Schmidt, U. Zeitner, M. Banasch, B. Schnabel, Enhanced E-beam pattern writing for nano-optics based on character projection, in Proceedings of SPIE, vol. 8352 (2012)

    Google Scholar 

  17. P. Lalanne, J.-P. Hugonin, High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms. JOSA A 15, 1843 (1998)

    Google Scholar 

  18. A. Lehmuskero, B. Bai, P. Vahimaa, M. Kuittinen, Wire-grid polarizers in the volume plasmon region. Opt. Express 17, 5481–5489 (2009)

    Google Scholar 

  19. A. Lehmuskero, M. Kuittinen, P. Vahimaa, Refractive index and extinction coefficient dependence of thin Al and Ir films on deposition technique and thickness. Opt. Express 15(17), 10744 (2007)

    Google Scholar 

  20. Y.-L. Liao, Y. Zhao, Design of wire-grid polarizer with effective medium theory. Opt. Quant Electron. 46, 641–647 (2014)

    Google Scholar 

  21. A. Macleod, Thin film polarizers and polarizing beam splitters. SVC Bulletin (Summer), 24–29 (2009)

    Google Scholar 

  22. M. Moharam, T. Gaylord, Rigorous coupled-wave analysis of metallic surface-relief gratings (1986)

    Google Scholar 

  23. MOXTEC. (n.d.). ProFlux® UV Series Datasheet

    Google Scholar 

  24. D.A. Papaconstantopoulos, Handbook of the Band Structure of Elemental Solids. Plenum Press, New York (1986)

    Google Scholar 

  25. V. Pelletier, K. Asakawa, M. Wu, D.H. Adamson, R.A. Register, P.M. Chaikin, Aluminum nanowire polarizing grids: Fabrication and analysis. Appl. Phys. Lett. 88, 211114 (2006)

    Google Scholar 

  26. S. Ratzsch, E.-B. Kley, A. Tünnermann, A. Szeghalmi, Influence of the oxygen plasma parameters on the atomic layer deposition of titanium dioxide. Nanotechnology 26, 024003 (2015)

    Google Scholar 

  27. T. Siefke, E.-B. Kley, A. Tünnermann, S. Kroker, Design and fabrication of titanium dioxide wire grid polarizer for the far ultraviolet spectral range, in Proceedings of SPIE, vol. 992706, 992706 (2016)

    Google Scholar 

  28. T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, T. Siefke, Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Adv. Opt. Mater. (2016)

    Google Scholar 

  29. T. Siefke, D. Lehr, T. Weber, D. Voigt, E. Kley, A. Tünnermann, Fabrication influences on deep-ultraviolet tungsten wire grid polarizers manufactured by double patterning. Opt. Lett. 39, 6434–6437 (2014)

    Google Scholar 

  30. H.G. Tompkins, E.A. Irene, Handbook of Ellipsometry (Springer, Norwich, NY, 2005)

    Google Scholar 

  31. H.G. Tompkins, T. Zhu, E. Chen, Determining thickness of thin metal films with spectroscopic ellipsometry for applications in magnetic random-access memory. JVSTA 16, 1297–1302 (1998)

    Google Scholar 

  32. T. Weber, T. Kaesebier, E.-B. Kley, S. Babin, G. Glushenko, A. Szeghalmi, Application of double pattering technology to fabricate optical elements: Process simulation, fabrication, and measurement. J. Vac. Sci. Technol. B 30(3), 2166 (2012)

    Google Scholar 

  33. T. Weber, T. Käsebier, M. Helgert, E.-B. Kley, A. Tünnermann, Tungsten wire grid polarizer for applications in the DUV spectral range. Appl. Opt. 51, 3224–3227 (2012)

    Google Scholar 

  34. T. Weber, T. Käsebier, B. Kley, A. Tünnermann, Broadband iridium wire grid polarizer for UV applications. Opt. Lett. 36, 445–447 (2011)

    Google Scholar 

  35. T. Weber, S. Kroker, T. Käsebier, B. Kley, A. Tünnermann, Silicon wire grid polarizer for ultraviolet applications. Appl. Opt. 53, 8140–8144 (2014)

    Google Scholar 

  36. M. Wurm, F. Pilarski, B. Bodermann, A new flexible scatterometer for critical dimension metrology. Rev. Sci. Instrum. 81, 023701 (2010)

    Google Scholar 

  37. P. Yeh, A new optical model for wire grid polarizer. Opt. Commun. 3(26), 289–292 (1978)

    Google Scholar 

  38. A.M. Zibold, W. Harnisch, T. Scherübl, N. Rosenkranz, J. Greif, Using the aerial image measurement technique to speed up mask development for 193 nm immersion and polarization lithography, in Proceedings of SPIE (2004)

    Google Scholar 

  39. A. Zibold, U. Strössner, N. Rosenkranz, A. Ridley, R. Richter, W. Harnisch, A. Williams, First results for hyper NA scanner emulation from AIMS 45-193i, in Proceedings of SPIE, vol. 628312 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support by the German Science Foundation (project PolEx (KR4768/1-1) and NanoMet (GrK 1952/1)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Siefke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siefke, T., Kroker, S. (2018). Polarization Control by Deep Ultra Violet Wire Grid Polarizers. In: Stenzel, O., Ohlídal, M. (eds) Optical Characterization of Thin Solid Films. Springer Series in Surface Sciences, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-75325-6_13

Download citation

Publish with us

Policies and ethics