Advertisement

Model Order Reduction a Key Technology for Digital Twins

  • Dirk Hartmann
  • Matthias Herz
  • Utz Wever
Chapter

Abstract

An increasing number of disruptive innovations with high economic and social impact shape our digitalizing world. Speed and extending scope of these developments are limited by available tools and paradigms to master exploding complexities. Simulation technologies are key enablers of digitalization. They enable digital twins mirroring products and systems into the digital world. Digital twins require a paradigm shift. Instead of expert centric tools, engineering and operation require autonomous assist systems continuously interacting with its physical and digital environment through background simulations. Model order reduction (MOR) is a key technology to transfer highly detailed and complex simulation models to other domains and life cycle phases. Reducing the degree of freedom, i.e., increasing the speed of model execution while maintaining required accuracies and predictability, opens up new applications. Within this contribution, we address the advantages of model order reduction for model-based system engineering and real-time thermal control of electric motors.

Keywords

Model order reduction Virtual sensor Systems engineering Krylov methods Response surfaces 

References

  1. 1.
    Bai, Z.: Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numerical Math. 43(1–2), 9–44 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Baur, U., Benner, P., Feng, L.: Model order reduction for linear and nonlinear systems: a system-theoretic perspective. Arch. Comput. Methods Eng. 21(4), 331–358 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Elmqvist, H., Junghanns, A., Mauß, J., Monteiro, M., Neidhold, T., Neumerkel, D., et al.: The functional mockup interface for tool independent exchange of simulation models. In: Proceedings of the 8th International Modelica Conference; March 20th-22nd; Technical Univeristy; Dresden; Germany, number 063, pp. 105–114. Linköping University Electronic Press (2011)Google Scholar
  4. 4.
    CIMdata. Model-based systems engineering business opportunities and overcoming implementation challenges. Cimdata report (2014)Google Scholar
  5. 5.
    Desjardins, A., Rixen, D.J., Rutzmoser, J.B., Wever, U.: A hyper reduction technique for real time structural mechanical applications (in preparation) (2018)Google Scholar
  6. 6.
    Eigner, M., Dickopf, T., Apostolov, H., Schaefer, P., Faißt, K.G., Keßler, A.: System lifecycle management: initial approach for a sustainable product development process based on methods of model based systems engineering. In: PLM, pp. 287–300 (2014)Google Scholar
  7. 7.
    Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication. White paper (2014)Google Scholar
  8. 8.
    Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Guo, X., Li, W., Iorio, F.: Convolutional neural networks for steady flow approximation. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 481–490. ACM (2016)Google Scholar
  10. 10.
    Haas, B.: Predictive control systems in heavy-duty commercial vehicles. In: Proceedings of Automotive Powertrain Control Systems (2012)Google Scholar
  11. 11.
    Hartmann, D., Mahler, M.: Automatische Generierung von standardisierten Systemmodellen aus 3d-simulationen im systems Engineering Kontext. NAFEMS Online Magazin, 33 (2014)Google Scholar
  12. 12.
    Hartmann, D., Obst, B.: Taking the heat off - Simulation to reliably determine motor temperature. Siemens Industry News (2016)Google Scholar
  13. 13.
    Hartmann, D., Papadopoulos, T.: Virtual X-ray for large motors. Siemens YouTube channel - https://youtu.be/86vkjykbHRM (2018)
  14. 14.
    Haskins, C., Walden, F.D., Hamelin, D.: Systems engineering handbook. In: Krueger, M. (ed.) INCOSE (2006)Google Scholar
  15. 15.
    Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press (1996)Google Scholar
  16. 16.
    Krischer, K., Rico-Martínez, R., Kevrekidis, I.G., Rotermund, H.H., Ertl, G., Hudson, J.L.: Model identification of a spatiotemporally varying catalytic reaction. AIChE J. 39(1), 89–98 (1993)CrossRefGoogle Scholar
  17. 17.
    Meyer, M., Matthies, H.G.: Efficient model reduction in non-linear dynamics using the karhunen-loeve expansion and dual-weighted-residual methods. Comput. Mech. 31(1), 179–191 (2003)CrossRefGoogle Scholar
  18. 18.
    Panetta, K.: Gartner Top 10 Strategic Technology Trends for 2018. Gartner (2018)Google Scholar
  19. 19.
    Paredis, C.: Model-based systems engineering: A roadmap for academic research. Frontiers in Model-Based Systems Engineering, Atlanta, GA (2011)Google Scholar
  20. 20.
    Patera, A.T., Rozza, G.: Reduced basis approximation and a posteriori error estimation for parameterized partial differential equations (2007)Google Scholar
  21. 21.
    Quarteroni, A., Rozza, G., Manzoni, A.: Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Industry 1(1), 3 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Schenk, T., Gilg, A.B., Mühlbauer, M., Rosen, R., Wehrstedt, J.: Architecture for modeling and simulation of technical systems along their lifecycle. Comput. Vis. Sci. 17(4), 167–183 (2015)CrossRefGoogle Scholar
  23. 23.
    Weeger, O., Wever, U., Simeon, B.: On the use of modal derivatives for nonlinear model order reduction. Int. J. Numer. Meth. Eng. 108(13), 1579–1602 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)CrossRefGoogle Scholar
  25. 25.
    Woo, T.: The democratization of simulation in a multiphysics world (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Siemens AG, Corporate TechnologyMunichGermany

Personalised recommendations