Advertisement

Sequential Reduced-Order Modeling for Time-Dependent Optimization Problems with Initial Value Controls

  • Matthias Heinkenschloss
  • Dörte Jando
Chapter

Abstract

This paper introduces an efficient sequential application of reduced order models (ROMs) to solve linear quadratic optimal control problems with initial value controls. The numerical solution of such a problem requires Hessian-times-vector multiplications, each of which requires solving a linearized state equation with initial value given by the vector and solving a second-order adjoint equation. Projection-based ROMs are applied to these differential equations to generate a Hessian approximation. However, in general, no fixed ROM well-approximates the application of the Hessian to all possible vectors of initial data. To improve a basic ROM, Heinkenschloss and Jando: Reduced-Order Modeling for Time-Dependent Optimization Problems with Initial Value Controls (SIAM Journal on Scientific Computing, 40(1), A22–A51, 2018, https://doi.org/10.1137/16M1109084) introduce an augmentation of the basic ROM by the right-hand side of the optimality system. This augmented ROM substantially improves the accuracy of the computed control, but this accuracy may still not be enough. The proposed sequential application of the augmented ROM can compute an approximate control with the same accuracy as the one obtained using only the expensive full-order model, but at a fraction of the cost.

Keywords

Optimal control Reduced-order models Hessian approximation Initial-condition problems Sequential reduced-order models 

Notes

Acknowledgements

This work was supported in part by NSF grant DMS-1522798, by the DARPA EQUiPS Program, Award UTA15-001068, and by the Excellence Initiative of the German Federal Government and the state governments—funding line Institutional Strategy: DFG project number ZUK 49/2 (“Heidelberg: Realizing the Potential of a Comprehensive University”)—via the Heidelberg Mobility Programme.

References

  1. 1.
    Akçelik, V., Biros, G., Ghattas, O., Long, K.R., van Bloemen Waanders, B.: A variational finite element method for source inversion for convective-diffusive transport. Finite Elem. Anal. Des. 39(8), 683–705 (2003). https://doi.org/10.1016/S0168-874X(03)00054-4
  2. 2.
    Bashir, O., Willcox, K., Ghattas, O., van Bloemen Waanders, B., Hill, J.: Hessian-based model reduction for large-scale systems with initial-condition inputs. Int. J. Numer. Methods Eng. 73(6), 844–868 (2008). https://doi.org/10.1002/nme.2100
  3. 3.
    Benner, P., Sachs, E., Volkwein, S.: Model order reduction for PDE constrained optimization. In: Leugering, G., Benner, P., Engell, S., Griewank, A., Harbrecht, H., Hinze, M., Rannacher, R., Ulbrich, S. (eds.) Trends in PDE Constrained Optimization. International Series of Numerical Mathematics, vol. 165, pp. 303–326. Birkhäuser/Springer, Cham (2014). http://dx.doi.org/10.1007/978-3-319-05083-6_19
  4. 4.
    Blum, J., Le Dimet, F.X., Navon, I.M.: Data assimilation for geophysical fluids. In: Temam, R.M., Tribbia, J.J. (eds.) Handbook of Numerical Analysis, vol. XIV. Special volume: Computational Methods for the Atmosphere and the Oceans, vol. 14, pp. 385–441. Elsevier/North-Holland, Amsterdam (2009). http://dx.doi.org/10.1016/S1570-8659(08)00209-3
  5. 5.
    Carraro, T., Geiger, M.: Direct and indirect multiple shooting for parabolic optimal control problems. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition Methods. MuS-TDD, Heidelberg, 6-8 May 2013. Contributions in Mathematical and Computational Sciences, vol. 9, pp. 35–67. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-23321-5_2
  6. 6.
    Daescu, D.N., Navon, I.M.: Efficiency of a POD-based reduced second-order adjoint model in 4d-var data assimilation. Int. J. Numer. Methods Fluids 53(6), 985–1004 (2007). http://dx.doi.org/10.1002/fld.1316
  7. 7.
    Gubisch, M., Volkwein, S.: Proper orthogonal decomposition for linear-quadratic optimal control. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms, Computational Science and Engineering, pp. 3–64. SIAM, Philadelphia (2017). https://doi.org/10.1137/1.9781611974829.ch1
  8. 8.
    Heinkenschloss, M., Jando, D.: Reduced order modeling for time-dependent optimization problems with initial value controls. SIAM J. Sci. Comput. 40(1), A22–A51 (2018). https://doi.org/10.1137/16M1109084
  9. 9.
    Hesse, H.K., Kanschat, G.: Mesh adaptive multiple shooting for partial differential equations. I. Linear quadratic optimal control problems. J. Numer. Math. 17(3), 195–217 (2009). http://dx.doi.org/10.1515/JNUM.2009.011
  10. 10.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling, Theory and Applications, vol. 23. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-1-4020-8839-1
  11. 11.
    Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK User’s Guide: Solution of large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998). https://doi.org/10.1137/1.9780898719628
  12. 12.
    Liberzon, D.: Calculus of Variations and Optimal Control Theory. A Concise Introduction. Princeton University Press, Princeton (2012)Google Scholar
  13. 13.
    Rao, V., Sandu, A.: A time-parallel approach to strong-constraint four-dimensional variational data assimilation. J. Comput. Phys. 313, 583–593 (2016). http://dx.doi.org/10.1016/j.jcp.2016.02.040
  14. 14.
    Sachs, E.W., Volkwein, S.: POD-Galerkin approximations in PDE-constrained optimization. GAMM-Mitteilungen 33(2), 194–208 (2010). http://dx.doi.org/10.1002/gamm.201010015

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computational and Applied MathematicsRice UniversityHoustonUSA
  2. 2.Interdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityHeidelbergGermany

Personalised recommendations