Skip to main content

Set-Oriented Multiobjective Optimal Control of PDEs Using Proper Orthogonal Decomposition

  • Chapter
  • First Online:

Abstract

In this chapter, we combine a global, derivative-free subdivision algorithm for multiobjective optimization problems with a posteriori error estimates for reduced-order models based on Proper Orthogonal Decomposition in order to efficiently solve multiobjective optimization problems governed by partial differential equations. An error bound for a semilinear heat equation is developed in such a way that the errors in the conflicting objectives can be estimated individually. The resulting algorithm constructs a library of locally valid reduced-order models online using a Greedy (worst-first) search. Using this approach, the number of evaluations of the full-order model can be reduced by a factor of more than 1000.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In a scalar optimization problem, it would not be advisable to give up rigorosity in order to reduce the error by such a factor. However, when dealing with multiple objectives and ‘steep’ Pareto fronts (cf. Remark 4), this factor results in huge computational savings since the number of dominated boxes is drastically reduced in every step.

References

  1. Albrecht, F., Haasdonk, B., Kaulmann, S., Ohlberger, M.: The localized reduced basis multiscale method. In: Proceedings of Algorithmy 2012, pp. 393–403 (2012)

    Google Scholar 

  2. Albunni, M.N., Rischmuller, V., Fritzsche, T., Lohmann, B.: Multiobjective optimization of the design of nonlinear electromagnetic systems using parametric reduced order models. IEEE Trans. Magn. 45(3), 1474–1477 (2009)

    Article  Google Scholar 

  3. Banholzer, S., Beermann, D., Volkwein, S.: POD-based bicriterial optimal control by the reference point method. IFAC-PapersOnLine 49, 210–215 (2016)

    Article  MathSciNet  Google Scholar 

  4. Banholzer, S., Beermann, D., Volkwein, S.: POD-based error control for reduced-order bicriterial PDE-constrained optimization. Annu. Rev. Control (2017). (To appear)

    Google Scholar 

  5. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  Google Scholar 

  6. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 2. Springer Science & Business Media (2007)

    Google Scholar 

  7. Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 124(1), 113–136 (2005)

    Article  MathSciNet  Google Scholar 

  8. Dihlmann, M., Kaulmann, S., Haasdonk, B.: Online reduced basis construction procedure for model reduction of parametrized evolution systems. In: IFAC Proceedings Volumes, vol. 45, no. 2, pp. 112–117 (2012)

    Article  Google Scholar 

  9. Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)

    Article  MathSciNet  Google Scholar 

  10. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin Heidelberg New York (2005)

    MATH  Google Scholar 

  11. Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM. Math. Model. Numer. Anal. 41, 575–605 (2007)

    Article  MathSciNet  Google Scholar 

  12. Gubisch, M., Volkwein, S.: Proper orthogonal decomposition for linear-quadratic optimal control. In Ohlberger, M., Benner, P., Cohen, A., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms, pp. 5–66. SIAM, Philadelphia, PA (2017)

    Chapter  Google Scholar 

  13. Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space. Mathe. Comput. Model. Dyn. Syst. 17(4), 423–442 (2011)

    Article  MathSciNet  Google Scholar 

  14. Hillermeier, C.: Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach. Birkhäuser (2001)

    Chapter  Google Scholar 

  15. Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  16. L. Iapichino, S. Trenz, and S. Volkwein. Reduced-order multiobjective optimal control of semilinear parabolic problems. In: Numerical Mathematics and Advanced Applications (ENUMATH 2015). Lecture Notes in Computational Science and Engineering, vol. 112, pp. 389–397. Springer Switzerland (2016)

    Google Scholar 

  17. Iapichino, L., Ulbrich, S., Volkwein, S.: Multiobjective PDE-constrained optimization using the reduced-basis method. Adv. Comput. Math. (2017). (To appear)

    Google Scholar 

  18. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer Science & Business Media (2012)

    Google Scholar 

  19. Ohlberger, M., Schindler, F.: Error control for the localized reduced basis multiscale method with adaptive on-line enrichment. SIAM J. Sci. Comput. 37(6), 2865–2895 (2015)

    Article  MathSciNet  Google Scholar 

  20. Peitz, S., Dellnitz, M.: Gradient-based multiobjective optimization with uncertainties. In: NEO 2016 Proceedings. Springer (2017). arXiv:1612.03815. (to appear)

    Google Scholar 

  21. Peitz, S., Ober-Blöbaum, S., Dellnitz, M.: Multiobjective optimal control methods for fluid flow using model order reduction (2015). arXiv:1510.05819

  22. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan, R., Tucker, K.P.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  23. Rogg, S., Trenz, S., Volkwein, S.: Trust-region POD using a-posteriori error estimation for semilinear parabolic optimal control problems. Konstanzer Schriften in Mathematik, 359 (2017). https://kops.uni-konstanz.de/handle/123456789/38240

  24. Schilders, W.H.A., van der Vorst, H.A., Rommes, J.: Model Order Reduction. Springer, Berlin Heidelberg (2008)

    MATH  Google Scholar 

  25. Schütze, O.: A new data structure for the nondominance problem in multi-objective optimization. In: International Conference on Evolutionary Multi-Criterion Optimization, pp. 509–518. Springer Berlin Heidelberg (2003)

    MATH  Google Scholar 

  26. Schütze, O., Witting, K., Ober-Blöbaum, S., Dellnitz, M.: Set Oriented Methods for the Numerical Treatment of Multiobjective Optimization Problems. In: Tantar, E., Tantar, A.-A., Bouvry, P., Del Moral, P., Legrand, P., Coello Coello, C.A., Schütze, O. (eds.) EVOLVE-A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation. Studies in Computational Intelligence, vol. 447, pp. 187–219. Springer Berlin Heidelberg (2013)

    MATH  Google Scholar 

  27. Singler, J.R.: New POD error expressions, error bounds, and asymptotic results for reduced order models of parabolic PDEs. SIAM J. Numer. Anal. 52, 852–876 (2014)

    Article  MathSciNet  Google Scholar 

  28. Tröltzsch, F.: Optimal Control of Partial Differential Equations. Graduate Studies in Mathematics, vol. 112. American Mathematical Society (2010)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Priority Programme SPP 1962 Non-smooth and Complementarity-based Distributed Parameter Systems of the German Research Foundation (DFG) and by the project Hybrides Planungsverfahren zur energieeffizienten Wärme- und Stromversorgung von städtischen Verteilnetzen funded by the German Ministry for Economic Affairs and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Volkwein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beermann, D., Dellnitz, M., Peitz, S., Volkwein, S. (2018). Set-Oriented Multiobjective Optimal Control of PDEs Using Proper Orthogonal Decomposition. In: Keiper, W., Milde, A., Volkwein, S. (eds) Reduced-Order Modeling (ROM) for Simulation and Optimization. Springer, Cham. https://doi.org/10.1007/978-3-319-75319-5_3

Download citation

Publish with us

Policies and ethics