Skip to main content

Abstract

Several analytical techniques can provide information about the elemental or molecular composition of metallic cultural heritage objects. But only electrochemical techniques can provide direct mechanistic and kinetic information of the corrosion process taking place on the metallic surface. While these techniques are routinely used in corrosion laboratories, their application for in situ assessment of the corrosion of metallic cultural heritage is much less common. One of the main reasons for that is the difficulty of handling a liquid electrolyte on irregular, leaning and usually rough surfaces. In this chapter, a short historic review of the use of electrochemical techniques in conservation science is presented, paying special attention to different approaches for solving the issues of in situ measurements. A new gel polymer electrolyte (G-PE) electrochemical cell, specifically developed by our research group for its application on metallic cultural heritage, is explained. This cell overcomes some of the shortcomings of previous developments, and has shown to provide results comparable to a traditional liquid cell. Examples are presented of its use in the comparison of the performance of different acrylic coatings for bare or patinated bronze, or the follow-up of the restoration treatment underwent on the bronze sphinxes of the National Archaeological Museum in Madrid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cano E, Lafuente D, Bastidas DM (2010) Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: a review. J Solid State Electrochem 14:381–391

    Article  CAS  Google Scholar 

  2. Letardi P, Beccaria A, Marabelli M, D’Ercoli G (1998) Application of electrochemical impedance measurements as a tool for the characterization of the conservation and protection state of bronze works of art. In: Ashton J, Hallam D (eds) Metal 98. International conference on metal conservation James & James, Draguignan-Figanières (France), pp 303–308

    Google Scholar 

  3. Hallam D, Thurrowgood A, Otieno-Alego V, Creagh D (2004) An EIS method for assessing thin oil films used in museums. In: Ashton J, Hallam D (eds) Metal 04: proceedings of the international conference on metals conservation, Canberra, Australia, pp 388–399

    Google Scholar 

  4. Dowsett M, Adriaens A, Schotte B, Jones G, Bouchenoire L (2007) Real time spectroelectrochemical growth and corrosion resistance monitoring of lead carboxylate coatings in an environmental cell (eCell). In: Degrigny C, van Langh R, Joosten I, Ankersmit B (eds) Metal 07: interim meeting of the ICOM-CC Metal WG, vol 3. Rijksmuseum, Amsterdam, Netherlands, pp 26–31

    Google Scholar 

  5. Letardi P (2013) Electrochemical measurements in the conservation of metallic heritage artefacts: an overview. In: Dillmann P, Watkinson D, Angelini E, Adriaens A (eds) Corrosion and conservation of cultural heritage metallic artefacts, EFC Series. Woodhead Publishing, Sawston, pp 126–148

    Chapter  Google Scholar 

  6. Price C, Hallam D, Heath G, Creagh D, Ashton J (1995) An electrochemical study of waxes for bronze sculpture. In: MacLeod ID, Pennec SL, Robbiola L (eds) Metal 95. International conference on metal conservation. James & James, Semur-en-Auxois (France), pp 233–241

    Google Scholar 

  7. Cano E, Bastidas DM, Argyropoulos V, Fajardo S, Siatou A, Bastidas JM, Degrigny C (2010) Electrochemical characterization of organic coatings for protection of historic steel artefacts. J Solid State Electrochem 14:453–463

    Article  CAS  Google Scholar 

  8. Angelini E, Carullo A, Corbellini S, Ferraris F, Gallone V, Grassini S, Parvis M, Vallan A (2006) Handheld-impedance-measurement system with seven-decade capability and potentiostatic function. IEEE Trans Instrum Meas 55:436–441

    Article  Google Scholar 

  9. Elsener B, Alter M, Lombardo T, Ledergerber M, Wörle M, Cocco F, Fantauzzi M, Palomba S, Rossi A (2016) A non-destructive in-situ approach to monitor corrosion inside historical brass wind instruments. Microchem J 124:757–764

    Article  CAS  Google Scholar 

  10. Clare TL, England A, Swartz N, Hosbein K (2013) Onsite electrochemical monitoring method for early detection of coating failure. In: Hyslop E, Gonzalez V, Troalen L, Wilson L (eds) Metal 2013: proceedings of the interim meeting of the ICOM-CC metal working group, Edinburgh, pp 89–94

    Google Scholar 

  11. Ramirez Barat B, Cano E (2015) The use of agar gelled electrolyte for in situ electrochemical measurements on metallic cultural heritage. Electrochimica Acta 182:751–762

    Article  Google Scholar 

  12. Gulotta D, Mariani B, Guerrini E, Trasatti S, Letardi P, Rosetti L, Toniolo L, Goidanich S (2017) Mi Fuma il Cervello self-portrait series of Alighiero Boetti: evaluation of a conservation and maintenance strategy based on sacrificial coatings. Heritage Science, 5:19

    Google Scholar 

  13. Letardi P (2004) Laboratory and field tests on patinas and protective coating systems for outdoor bronze monuments. In: Ashton J, Hallam D (eds) Metal 04: proceedings of the international conference on metals conservation, Canberra, Australia, pp 379–387

    Google Scholar 

  14. Letardi P, Salvadori B, Galeotti M, Cagnini A, Porcinai S, Barbone AS, Sansonetti A (2016) An in situ multi-analytical approach in the restoration of bronze artefacts. Microchem J 125:151–158

    Article  CAS  Google Scholar 

  15. Sansonetti A, Colella M, Letardi P, Salvadori B, Striova J (2015) Laser cleaning of a nineteenth-century bronze sculpture: In situ multi-analytical evaluation. Stud Conserv 60:S28–S33

    Article  CAS  Google Scholar 

  16. Corbellini S, Parvis M, Grassini S (2012) Noninvasive solution for electrochemical impedance spectroscopy on metallic works of art. IEEE Trans Instrum Meas 61:1193–1200

    Article  CAS  Google Scholar 

  17. Grassini S, Angelini E, Parvis M, Bouchar M, Dillmann P, Neff D (2013) An in situ corrosion study of Middle Ages wrought iron bar chains in the Amiens Cathedral. Appl Phys A Mater Sci Process 113:971–979

    Article  CAS  Google Scholar 

  18. England AH, Clare TL (2014) Synthesis and characterization of flexible hydrogel electrodes for electrochemical impedance measurements of protective coatings on metal sculptures. Electroanalysis 26:1059–1067

    Article  CAS  Google Scholar 

  19. Cano E, Crespo A, Lafuente D, Ramirez Barat B (2014) A novel gel polymer electrolyte cell for in-situ application of corrosion electrochemical techniques. Electrochem Commun 41:16–19

    Article  CAS  Google Scholar 

  20. Letardi P, Ramirez Barat B, Cano E (2017) Analysis of the influence of the electrochemical cell setup for corrosion measurements on metallic cultural heritage. In: European Corrosion Congress - EUROCORR, Prague

    Google Scholar 

  21. Ramirez Barat B, Cano E, Letardi P (2018) Advances in the design of a gel-cell electrochemical sensor for corrosion measurements on metallic cultural heritage. Sens Actuators B Chem 261:572–580

    Article  Google Scholar 

  22. Ramirez Barat B, Cano Díaz E (2015) In situ assessment of protective coatings for metallic cultural heritage using electrochemical impedance spectroscopy. Ge-Conservacion 2015:6–13

    Google Scholar 

  23. Ramirez Barat B, Crespo A, García E, Díaz S, Cano E (2017) An EIS study of the conservation treatment of the bronze sphinxes at the Museo Arqueológico Nacional (Madrid). J Cult Heritage 24:93–99

    Article  Google Scholar 

  24. Ramirez Barat B, Palomar T, Garcia B, de la Fuente D, Cano E (2016) Composition and protective properties of weathering steel artificial patinas for the conservation of contemporary outdoor sculpture. In: 9th interim meeting of the ICOM-CC metals working group. METAL2016, New Delhi, India

    Google Scholar 

  25. Crespo A, Ramirez Barat B, Cano E (2016) Artificial patinas in contemporary weathering steel sculpture. In: 5th International Conference YOuth in COnservation of CUltural Heritage—YOCOCU 2016, Madrid

    Google Scholar 

  26. Crespo A, Ramirez Barat B, Diaz I, Cano E (2017) Assessment of the protective properties of patinas on contemporary sculpture made out of weathering steel. In: J Bridgland (ed) ICOM-CC 18th Triennial conference copenhagen

    Google Scholar 

  27. Ramirez Barat B, Crespo A, Cano E (2017) In situ evaluation of outdoor sculpture with a gel polymer electrolyte cell. In: Mosquera MJ, Almoraima ML (eds) Conserving Cultural Heritage. CRC Press/Balkema, London, pp 83–86

    Google Scholar 

Download references

Acknowledgements

This work has been funded by EU project “Integrated Platform for the European Research Infrastructure on Cultural Heritage” (IPERION-CH, Ref. H2020-INFRAIA-2014–2015, GRANT no. 654028), by project HAR2014-54893-R from the Ministerio de Economía, Industria y Competitividad (MINECO, Spain), and by Programme GEOMATERIALES 2-CM (S2013/MIT_2914) from the Community of Madrid. Authors also acknowledge the support by the Spanish Network TechnoHeritage, the Museo Arqueológico Nacional and Museo de Escultura de Leganés.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Cano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cano, E., Ramírez Barat, B. (2018). Electrochemical Techniques for in situ Corrosion Evaluation of Cultural Heritage. In: Bastidas, D., Cano, E. (eds) Advanced Characterization Techniques, Diagnostic Tools and Evaluation Methods in Heritage Science. Springer, Cham. https://doi.org/10.1007/978-3-319-75316-4_2

Download citation

Publish with us

Policies and ethics