Neurogenic Mechanisms in Prehypertension and Pharmacologic Approaches to the Prevention and Treatment of Hypertension: Highlights of Professor Stevo Julius’ Scientific Contributions

  • Brent M. EganEmail author
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)


Professor Stevo Julius’ extraordinary scientific contributions during the past half-century advanced our understanding on the pathogenesis, prevention, and treatment of hypertension. His early work showed a relationship between anger, increased sympathetic drive, and reduced parasympathetic tone was fundamental to hyperkinetic borderline hypertension. The investigators provided evidence that sympathetic overactivity led to β-adrenoceptor downregulation and structural and functional cardiac and vascular changes. These changes, rather than autoregulation, contributed to the transition from high to normal cardiac output with a progressive rise in blood pressure. Through population-based studies, Professor Julius confirmed a key role for sympathetic activation, especially faster heart rates, in the early phase of hypertension. Faster heart rates coincided with cardiometabolic abnormalities including hyperinsulinemia, insulin resistance, and dyslipidemia. The investigators subsequently showed that increased vascular α-adrenergic tone induced resistance to insulin-mediated glucose disposal in skeletal muscle. Professor Julius and colleagues documented that angiotensin-receptor blockade safely lowered blood pressure in prehypertensives and slowed the transition to hypertension. He then partnered with long-term colleagues on multinational studies in middle-aged and older hypertensives at high cardiovascular risk. These studies showed that (1) failure to control blood pressure during the first 6 months of a clinical trial led to a significant increase in cardiovascular events, (2) patients controlled on more antihypertensive medications had less benefit of treatment than individuals controlled on monotherapy, and (3) faster heart rates were associated with worse outcomes in treated hypertensives. Clinicians are better prepared to prevent and treat hypertension by understanding the life work of Dr. Julius and colleagues.


Borderline hypertension Prehypertension Sympathetic Parasympathetic Heart rate 


  1. 1.
    Harburg E, Julius S, McGinn NF, McLeod J, Hoobler SW. Personality traits and behavioral patterns associated with systolic blood pressure in college males. J Chronic Dis. 1964;17:405–14.CrossRefPubMedGoogle Scholar
  2. 2.
    Schneider R, Egan B, Johnson EH, Drobney H, Julius S. Anger and anxiety in borderline hypertension. Psychosomatic Med. 1986;48:242–8.CrossRefGoogle Scholar
  3. 3.
    Julius R, Pascual A, London R. Role of parasympathetic inhibition in the hyperkinetic type of borderline hypertension. Circulation. 1971;44:413–8.CrossRefGoogle Scholar
  4. 4.
    Esler M, Julius S, Randall OS, Ellis CN, Kashima T. Relation of renin status to neurogenic vascular resistance in borderline hypertension. Am J Cardiol. 1975;36:708–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Esler M, Julius S, Zweifler A, Randall O, Harburg E, Gardiner H, et al. Mild high-renin essential hypertension: neurogenic human hypertension? N Engl J Med. 1977;296:405–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Julius S, Jamerson K, Mejia A, Krause L, Schork N, Jones K. The association of borderline hypertension with target organ changes and higher coronary risk. Tecumseh Blood Pressure Study. JAMA. 1990;264:354–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Julius S, Gudbrandsson T, Jamerson K, Andersson O. The interconnection between sympathetics, microcirculation, and insulin resistance in hypertension. Blood Press. 1992;1:9–19.CrossRefPubMedGoogle Scholar
  8. 8.
    Julius S, Jamerson K. Sympathetics, insulin resistance and coronary risk in hypertension: the ‘chicken-and-egg’ question. J Hypertens. 1994;12:495–502.CrossRefPubMedGoogle Scholar
  9. 9.
    Jamerson K, Julius S, Gudbrandsson T, Andersson O, Brant DO. Reflex sympathetic activation induces acute insulin resistance in the human forearm. Hypertension. 1993;21:618–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Wilson PWF, Meigs JB. Cardiometabolic risk: a Framingham perspective. Internat J Obes. 2008;32:S17–20.CrossRefGoogle Scholar
  11. 11.
    Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, Black HR, Grimm RH Jr, Messerli FH, Oparil S, Schork MA. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med. 2006;354:1685–97.CrossRefGoogle Scholar
  12. 12.
    Julius S, Kjeldsen SE, Weber M, Brunner HR, Ekman S, Hannson L, Hau T, Laragh J, McInnes GT, Mitchell L, Plat F, Schork A, Smith B, Zanchetti A. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: The VALUE randomized trial. Lancet. 2004;363:2022–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Weber MA, Julius S, Kjedlsen SE, et al. Cardiovascular outcomes in hypertensive patients comparing single-agent therapy with combination therapy. J Hypertens. 2012;30:2213–22.CrossRefPubMedGoogle Scholar
  14. 14.
    Julius S, Palatini P, Kjeldsen SE, Zanchetti A, Weber MA, McInnes GT, Brunner HR, Mancia G, Schork MA, Hua TA, Holzhauer B, Zappe D, Majahalme S, Jamerson K, Koylan N. Usefulness of heart rate to predict future cardiac events in treated patients with high-risk systemic hypertension. Am J Cardiol. 2012;109:685–92.CrossRefGoogle Scholar
  15. 15.
    Spielberger CD, Johnson EH, Russell SF, Crane RJ, Jacobs GA, Worden TJ. The experience and expression of anger: construction and validation of an anger expression scale. In: Chesney MA, Rosenman RH, editors. Anger and hostility in cardiovascular and behavioral disorders. New York: Hemisphere/McGraw; 1985. p. 5–30.Google Scholar
  16. 16.
    Alexander F. Emotional factors in essential hypertension: presentation of a tentative hypothesis. Psychosom Med. 1939;1:175–9.Google Scholar
  17. 17.
    Marci CD, Glick DM, Loh R, Dougherty DD. Autonomic and prefrontal cortex responses to autobiographical recall of emotions. Cogn Affect Behav Neurosci. 2007;7:243–50.CrossRefPubMedGoogle Scholar
  18. 18.
    Levy RL, White PD, Stroud WD. Transient tachycardia: prognostic significance alone and in association with transient hypertension. JAMA. 1945;129:585–8.CrossRefGoogle Scholar
  19. 19.
    Lund-Johansen P. Hemodynamic alterations in early essential hypertension: recent advances. In: Gross F, Strassen, editors. Mild hypertension: recent advances. New York, NY: Raven Press; 1983. p. 237–49.Google Scholar
  20. 20.
    Julius S, Randall OS, Esler MD, Kashima T, Ellis C, Bennett J. Altered cardiac responsiveness and regulation in the normal cardiac output type of borderline hypertension. Circ Res. 1975;36(6 Suppl 1):199–207.CrossRefPubMedGoogle Scholar
  21. 21.
    Messerli FH, Ventura HO, Resisin E, Dreslinski GR, Dunn FG, MacPhee AA, Frohlich ED. Borderline hypertension and obesity: two prehypertensive states with elevated cardiac output. Circulation. 1982;66:55–60.CrossRefPubMedGoogle Scholar
  22. 22.
    Reisin E, Messerli FG, Ventura HO, Frohlich ED. Renal hemodynamic studies in obesity hypertension. J Hypertens. 1987;5:397–400.PubMedGoogle Scholar
  23. 23.
    Egan BM, Schork NJ, Weder AB. Regional hemodynamic abnormalities in overweight men. Focus on alpha-adrenergic vascular responses. Am J Hypertens. 1989;2(6 Part 1):428–34.CrossRefPubMedGoogle Scholar
  24. 24.
    Guyton AC, Coleman TG. Quantitative analysis of the pathophysiology of hypertension. Circ Res. 1969;24(5 Suppl):1–19.PubMedGoogle Scholar
  25. 25.
    Guyton AC. Dominant role of the kidneys and accessory role of whole-body autoregulationin the pathogenesis of hypertension. Am J Hypertens. 1989;2:575–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Julius S, Pascual AV, Reilly K, London R. Abnormalities of plasma volume in borderline hypertension. Arch Intern Med. 1971;127:116–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Julius S, Conway J. Hemodynamic studies in patients with borderline blood pressure elevation. Circulation. 1968;38:282–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Cohn JN. Relationship of plasma volume changes to resistance and capacitance vessel effects of sympathomimetic amines and angiotensin in man. Clin Sci. 1966;30:267–78.PubMedGoogle Scholar
  29. 29.
    Kjeldsen SE, Moan A, Petrin J, Weder A, Julius S. Effects of increased arterial epinephrine on insulin, glucose and phosphate. Blood Press. 1996;5:27–31.CrossRefPubMedGoogle Scholar
  30. 30.
    Julius R, Pascual A, Abbrecht P, London R. Effect of beta-adrenergic blockade on plasma volume in human subjects. Proc Soc Exp Biol Med. 1972;140:982–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Julius S, Majahalme S. The changing face of sympathetic overactivity in hypertension. Ann Med. 2000;32:365–70.CrossRefPubMedGoogle Scholar
  32. 32.
    Hart MN, Heistad DD, Brody MJ. Effect of chronic hypertension and sympathetic denervation on wall/lumen ratio of cerebral vessels. Hypertension. 1980;2:419–28.CrossRefPubMedGoogle Scholar
  33. 33.
    Bevan RD, Tsuru H, Bevan JH. Cerebral artery mass in the rabbit is reduced by chronic sympathetic denervation. Stroke. 1983;14:393–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Mulvany MJ. Small artery remodeling in hypertension. Basic Clin Pharm Toxicol. 2011;110:49–55.CrossRefGoogle Scholar
  35. 35.
    Egan BM, Schork N, Panis R, Hinderliter A. Vascular structure enhances regional resistance responses in mild hypertension. J Hypertension. 1988;6(1):41–8.CrossRefGoogle Scholar
  36. 36.
    Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982;62:347–503.CrossRefGoogle Scholar
  37. 37.
    Egan B, Panis R, Hinderliter A, Schork N, Julius S. Mechanism of increased alpha-adrenergic vasoconstriction in human essential hypertension. J Clin Invest. 1987;80:812–7.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans: Evidence from direct intraneural recordings. Hypertension. 1989;14:177–83.CrossRefPubMedGoogle Scholar
  39. 39.
    Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13:99S–105S.CrossRefPubMedGoogle Scholar
  40. 40.
    Julius S, Jamerson K, Mejia A, Krause L, Schork N, Jones K. The association of borderline hypertension with target orgnai changes and higher coronary risk. Tecumseh Blood Pressure Study. JAMA. 1990;264:354–8.CrossRefPubMedGoogle Scholar
  41. 41.
    De Fronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care. 2009;32(Suppl 2):S157–63.CrossRefGoogle Scholar
  42. 42.
    Pollare T, Lithell H, Selinus I, Berne C. Application of prazosin is associated with an increase of insulin sensitivity in obese patients with hypertension. Diabetologia. 1988;31:415–20.CrossRefPubMedGoogle Scholar
  43. 43.
    Berne C, Pollare T, Lithell H. Effects of antihypertensive treatment on insulin sensitivity with special reference to ACE inhibitors. Diabetes Care. 1991;14(Suppl 4):39–47.CrossRefPubMedGoogle Scholar
  44. 44.
    Jamerson KA, Smith SD, Amerena JV, Grant E, Julius S. Vasoconstriction with norepinrphrine causes less forearm insulin resistance than a reflex sympathetic vasoconstriction. Hypertension. 1994;23(past 2):1006–11.CrossRefPubMedGoogle Scholar
  45. 45.
    Lillioja S, Young AA, Culter CL, Ivy JL, Abbott WG, Zawadzki JK, Yki-Järvinen H, Christin L, Secomb TW, Bogardus C. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J Clin Invest. 1987;80:415–24.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, Abbott R, Godwin J, Dyer A, Stamler J. Blood pressure, stroke, and coronary heart disease. Part I, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335:765–74.CrossRefPubMedGoogle Scholar
  47. 47.
    Willey JZ, Moon YP, Kahn E, Rodriguez CJ, Rundek T, Cheung K, Sacco FL, Elkind MSV. Population attributable risks of hypertension and diabetes for cardiovascular disease and stroke in the Northern Manhattan Study. J Am Heart Assoc. 2014;3:e001106. Scholar
  48. 48.
    Hall JE, Brands MW, Zappe DH, Alonso GM. Insulin resistance, hyperinsulinemia, and hypertension: causes, consequences, or merely correlations? Proc Soc Exp Biol Med. 1994;208:317–29.CrossRefGoogle Scholar
  49. 49.
    Howard BV. Insulin resistance and lipid metabolism. Am J Cardiol. 1990;84(Suppl 1A):28J–32J.Google Scholar
  50. 50.
    Pyorala K, Savolainen E, Kaukola S, Haapakoski J. Plasma insulin as a coronary heart disease risk factor: relationship to the other risk factors and predictive value during 9½ year follow-up of the Helsinki Policemen Study. Actu Med Stand Suppl. 1985;701:38–52.Google Scholar
  51. 51.
    Ducimetiere P, Eschwege E, Papoz L, Richard JL, Claude JR, Rosselin G. Relationship of plasma insulin levels to the incidence of myocardial infarction and coronary heart disease mortality in a middle-aged population. Diabetologia. 1980;19:205–10.CrossRefPubMedGoogle Scholar
  52. 52.
    Palatini P, Benetos A, Grassi G, Julius S, Kjeldsen SE, Mancia G, Narkiewicz K, Parati G, Pessina AC, Ruilope LM, Zanchetti A. Identification and management of the hypertensive patient with elevated heart rate: Statement of a European Society of Hypertension Consensus Meeting. J Hypertens. 2006;24:603–10.CrossRefPubMedGoogle Scholar
  53. 53.
    Valentini M, Julius S, Palatini P, Brook RD, Bard RL, Bisognano JD, Kaciroti N. Attenuation of haemodynamic, metabolic and energy expenditure responses to isoproterenol in patients with hypertension. J Hypertens. 2004;22:1999–2006.CrossRefPubMedGoogle Scholar
  54. 54.
    Julius S, Li Y, Brant D, Krause L, Buda AJ. Neurogenic pressor episodes fail to cause hypertension, but do induce cardiac hypertrophy. Hypertension. 1989;13:422–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Kjeldsen SE, Gjesdal K, Eide I, Aakesson I, Amundsen R, Foss OP, et al. Increased beta-thromboglobulin in essential hypertension: interactions between arterial plasma adrenaline, platelet function and blood lipids. Actu Med Scund. 1983;213:369–73.CrossRefGoogle Scholar
  56. 56.
    Kjeldsen SE, Zweifler AM, Petrin J, Wder AB, Julius S. Sympathetic nervous system involvement in essential hypertension: Increased platelet noradrenaline coincides with decreased β-adrenoreceptor responsiveness. Blood Press. 1994;3:164–71.CrossRefPubMedGoogle Scholar
  57. 57.
    Palatini P, Julius S. Heart rate and the cardiovascular risk. J Hypertension. 1997;15:3–17.CrossRefGoogle Scholar
  58. 58.
    Aronow WS, Casey DE, Collins KJ, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. Hypertension. 2017.Google Scholar
  59. 59.
    Rao A, Pandya V, Whaley-Connell A. Obesity and insulin resistance in resistant hypertension: Implications for the kidney. Adv Chron Kid Dis. 2015;22:211–7.CrossRefGoogle Scholar
  60. 60.
    Kotecha D, Flather MD, Altman DG, et al. Heart rate and rhythm and the benefit of beta-blockers in patients with heart failure. J Am Coll Cardiol. 2017;69:2885–96.CrossRefPubMedGoogle Scholar
  61. 61.
    Gheorghiade M, Goldstein S. β-blockers in the post-myocardial infarction patient. Circulation. 2002;106:394–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MedicineUniversity of South Carolina School of MedicineGreenvilleUSA
  2. 2.Care Coordination InstituteGreenvilleUSA

Personalised recommendations