Sympathoadrenal Reactivity to Stress as a Predictor of Cardiovascular Risk Factors

  • Arnljot Flaa
  • Morten Rostrup
  • Sverre E. KjeldsenEmail author
  • Ivar Eide
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)


This study suggests that resting blood pressure (BP) reflects arterial catecholamine levels not only in the high BP range but also among subjects with normal BP. Moreover, cardiovascular and catecholamine reactivity to mental stress seems to be a marker of resting BP, indicating that subjects with higher BP may be more vulnerable to daily stress. The associations in this study were found in subjects unaware of their BP status, indicating other explanations than mere awareness behind the sympathoadrenal activation seen in young borderline hypertensives.

Catecholamines during mental stress contributed substantially and significantly to the prediction of future systolic BP independently of other well-known predictors. This is the first study showing that sympathetic nervous activity during mental stress predicts future BP, indicating a possible role in the development of essential hypertension independent of initial BP. The early stage of hypertension development characterized by a β-adrenergic hyperkinetic circulation with increased cardiac output may explain why reactivity to the mental stress (predominated by β-adrenergic responses) is a better predictor than the cold pressor test in young subjects.

Adrenaline response to mental stress was a negative predictor of future BMI, waist circumference, and triceps skinfold thickness after 18 years. These relationships were not found during the cold pressor test. As mental stress induces a more pronounced adrenaline release compared to the cold pressor test and exerts its effects mainly through activation of β-adrenergic receptors, these findings are in accordance with the growing amount of evidence indicating that reduced stimulation of β-receptors plays an important role in the development of obesity.

The noradrenaline response to the cold pressor test predicted fasting plasma glucose and HOMA-IR after 18 years’ follow-up. The association with HOMA-IR remained significant after adjusting for other risk factors. The superiority of the cold pressor test over the mental stress test may be explained by the cold pressor test’s ability to test α-adrenergic responses which reduce blood flow to skeletal muscles, indicating that insulin resistance may develop more readily in subjects liable to increased vasoconstriction.



This chapter is based on the PhD thesis that Arnljot Flaa, MD, defended at the University of Oslo in 2009. Though shortened the structure of the thesis has been maintained.

Conflict of interest: S.E. Kjeldsen reports modest honoraria from ABDiiBRAHiM, Bayer, MSD and Takeda. The other authors report no conflicts.


  1. 1.
    Rostrup M, Westheim A, Kjeldsen SE, Eide I. Cardiovascular reactivity, coronary risk factors, and sympathetic activity in young men. Hypertension. 1993;22(6):891–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Moan A, Nordby G, Rostrup M, Eide I, Kjeldsen SE. Insulin sensitivity, sympathetic activity, and cardiovascular reactivity in young men. Am J Hypertens. 1995;8(3):268–75.CrossRefPubMedGoogle Scholar
  3. 3.
    Fossum E, Hoieggen A, Moan A, Rostrup M, Nordby G, Kjeldsen SE. Relationship between insulin sensitivity and maximal forearm blood flow in young men. Hypertension. 1998;32(5):838–43.CrossRefPubMedGoogle Scholar
  4. 4.
    Shields RW Jr. Functional anatomy of the autonomic nervous system. J Clin Neurophysiol. 1993;10(1):2–13.CrossRefPubMedGoogle Scholar
  5. 5.
    Goldstein DS. Peripheral catecholaminergic systems. Stress, catecholamines, and cardiovascular disease. New York: Oxford University Press; 1995. p. 103–63.Google Scholar
  6. 6.
    Lipworth BJ. Clinical pharmacology of beta 3-adrenoceptors. Br J Clin Pharmacol. 1996;42(3):291–300.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gauthier C, Seze-Goismier C, Rozec B. Beta 3-adrenoceptors in the cardiovascular system. Clin Hemorheol Microcirc. 2007;37(1–2):193–204.PubMedGoogle Scholar
  8. 8.
    Young JB, Rosa RM, Landsberg L. Dissociation of sympathetic nervous system and adrenal medullary responses. Am J Phys. 1984;247(1 Pt 1):E35–40.Google Scholar
  9. 9.
    Levy RL, White PD, Stroud WD, Hillman CC. Transient tachycardia. Prognostic significance alone and in association with transient hypertension. JAMA. 1945;129(9):585–8.CrossRefGoogle Scholar
  10. 10.
    Levy RL, Hillman CC, Stroud WD, White PD. Transient hypertension. Its significance in terms of later development of sustained hypertension and cardiovascular-renal diseases. JAMA. 1944;126(13):829–33.CrossRefGoogle Scholar
  11. 11.
    Grassi G, Vailati S, Bertinieri G, et al. Heart rate as marker of sympathetic activity. J Hypertens. 1998;16(11):1635–9.CrossRefGoogle Scholar
  12. 12.
    Seals DR, Dinenno FA. Collateral damage: cardiovascular consequences of chronic sympathetic activation with human aging. Am J Physiol Heart Circ Physiol. 2004;287(5):H1895–905.CrossRefPubMedGoogle Scholar
  13. 13.
    Ernsberger P, Koletsky RJ, Friedman JE. Contribution of sympathetic nervous system overactivity to cardiovascular and metabolic disease. Rev Contemp Pharmacother. 1998;9(7):411–28.Google Scholar
  14. 14.
    Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002;288(21):2709–16.CrossRefGoogle Scholar
  15. 15.
    Mancia G, Bousquet P, Elghozi JL, et al. The sympathetic nervous system and the metabolic syndrome. J Hypertens. 2007;25(5):909–20.CrossRefGoogle Scholar
  16. 16.
    Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285(19):2486–97.CrossRefGoogle Scholar
  17. 17.
    Alberti KGM, Zimmet P, Shaw J. The metabolic syndrome--a new worldwide definition. Lancet. 2005;366(9491):1059–62.CrossRefPubMedGoogle Scholar
  18. 18.
    Esposito K, Giugliano D. The metabolic syndrome and inflammation: association or causation? Nutr Metab Cardiovasc Dis. 2004;14(5):228–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Siani A, Strazzullo P. Tackling the genetic bases of metabolic syndrome: a realistic objective? Nutr Metab Cardiovasc Dis. 2006;16(5):309–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Ritchie SA, Connell JM. The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis. 2007;17(4):319–26.CrossRefPubMedGoogle Scholar
  21. 21.
    Grassi G. Sympathetic overdrive and cardiovascular risk in the metabolic syndrome. Hypertens Res. 2006;29(11):839–47.CrossRefPubMedGoogle Scholar
  22. 22.
    Grassi G, Quarti-Trevano F, Seravalle G, Dell'Oro R. Cardiovascular risk and adrenergic overdrive in the metabolic syndrome. Nutr Metab Cardiovasc Dis. 2007;17(6):473–81.CrossRefPubMedGoogle Scholar
  23. 23.
    Beevers G, Lip GYH, O’Brien E. ABC of hypertension: the pathophysiology of hypertension. BMJ. 2001;322(7291):912–6.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kjeldsen SE, Flaaten B, Eide I, Helgeland A, Leren P. Evidence of increased peripheral catecholamine release in patients with long-standing, untreated essential hypertension. Scand J Clin Lab Invest. 1982;42(3):217–23.CrossRefPubMedGoogle Scholar
  25. 25.
    de Champlain J, Petrovich M, Gonzalez M, Lebeau R, Nadeau R. Abnormal cardiovascular reactivity in borderline and mild essential hypertension. Hypertension. 1991;17(4 Suppl):III22–8.PubMedGoogle Scholar
  26. 26.
    Kjeldsen SE, Zweifler AJ, Petrin J, Weder AB, Julius S. Sympathetic nervous system involvement in essential hypertension: increased platelet noradrenaline coincides with decreased beta-adrenoreceptor responsiveness. Blood Press. 1994;3(3):164–71.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Reims HM, Fossum E, Hoieggen A, Moan A, Eide I, Kjeldsen SE. Adrenal medullary overactivity in lean, borderline hypertensive young men. Am J Hypertens. 2004;17(7):611–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Julius S, Majahalme S. The changing face of sympathetic overactivity in hypertension. Ann Med. 2000;32(5):365–70.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lund-Johansen P. Hemodynamic concepts of hypertension: cardiac output versus peripheral vascular resistance. In: Birkenhager WH, Robertson JIS, Zanchetti A, editors. Handbook of hypertension, Hypertension in the twentieth century: concepts and achievements, vol. 22. Amsterdam: Elsevier; 2004. p. 151–72.Google Scholar
  30. 30.
    Rostrup M, Kjeldsen SE, Eide IK. Awareness of hypertension increases blood pressure and sympathetic responses to cold pressor test. Am J Hypertens. 1990;3(12Pt1):912–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Rostrup M, Mundal HH, Westheim A, Eide I. Awareness of high blood pressure increases arterial plasma catecholamines, platelet noradrenaline and adrenergic responses to mental stress. J Hypertens. 1991;9(2):159–66.CrossRefPubMedGoogle Scholar
  32. 32.
    Rostrup M, Ekeberg O. Awareness of high blood pressure influences on psychological and sympathetic responses. J Psychosom Res. 1992;36(2):117–23.CrossRefPubMedGoogle Scholar
  33. 33.
    Cowley AW Jr. The concept of autoregulation of total blood flow and its role in hypertension. Am J Med. 1980;68(6):906–16.CrossRefPubMedGoogle Scholar
  34. 34.
    Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982;62(2):347–504.CrossRefGoogle Scholar
  35. 35.
    Julius S. Transition from high cardiac output to elevated vascular resistance in hypertension. Am Heart J. 1988;116(2 Pt 2):600–6.CrossRefPubMedGoogle Scholar
  36. 36.
    Bohm RO, van Baak MA, van Hooff ME, Mooy J, Rahn KH. A long-term study of plasma catecholamine levels and plasma renin activity in borderline hypertension. J Hypertens. 1987;5(6):655–61.CrossRefPubMedGoogle Scholar
  37. 37.
    Perini C, Muller FB, Buhler FR. Suppressed aggression accelerates early development of essential hypertension. J Hypertens. 1991;9(6):499–503.CrossRefPubMedGoogle Scholar
  38. 38.
    Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42(4):474–80.CrossRefPubMedGoogle Scholar
  39. 39.
    Lefebvre PJ, Scheen AJ. Obesity: causes and new treatments. Exp Clin Endocrinol Diabetes. 2001;109(Suppl 2):S215–24.CrossRefPubMedGoogle Scholar
  40. 40.
    Baak MA. The peripheral sympathetic nervous system in human obesity. Obes Rev. 2001;2(1):3–14.CrossRefPubMedGoogle Scholar
  41. 41.
    Masuo K, Katsuya T, Fu Y, Rakugi H, Ogihara T, Tuck ML. Beta2- and beta3-adrenergic receptor polymorphisms are related to the onset of weight gain and blood pressure elevation over 5 years. Circulation. 2005;111(25):3429–34.CrossRefPubMedGoogle Scholar
  42. 42.
    Eikelis N, Esler M. The neurobiology of human obesity. Exp Physiol. 2005;90(5):673–82.CrossRefPubMedGoogle Scholar
  43. 43.
    Tentolouris N, Liatis S, Katsilambros N. Sympathetic system activity in obesity and metabolic syndrome. Ann N Y Acad Sci. 2006;1083:129–52.CrossRefPubMedGoogle Scholar
  44. 44.
    Tataranni PA, Young JB, Bogardus C, Ravussin E. A low sympathoadrenal activity is associated with body weight gain and development of central adiposity in Pima Indian men. Obes Res. 1997;5(4):341–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Young JB, Landsberg L. Stimulation of the sympathetic nervous system during sucrose feeding. Nature. 1977;269(5629):615–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Landsberg L. Role of the sympathetic adrenal system in the pathogenesis of the insulin resistance syndrome. Ann N Y Acad Sci. 1999;892:84–90.CrossRefPubMedGoogle Scholar
  47. 47.
    Landsberg L. Diet, obesity and hypertension: an hypothesis involving insulin, the sympathetic nervous system, and adaptive thermogenesis. QJM. 1986;61(3):1081–90.PubMedGoogle Scholar
  48. 48.
    Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities--the role of insulin resistance and the sympathoadrenal system. N Engl J Med. 1996;334(6):374–81.CrossRefPubMedGoogle Scholar
  49. 49.
    Julius S, Gudbrandsson T, Jamerson K, Tariq SS, Andersson O. The hemodynamic link between insulin resistance and hypertension. J Hypertens. 1991;9(11):983–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Kaaja RJ, Poyhonen-Alho MK. Insulin resistance and sympathetic overactivity in women. J Hypertens. 2006;24(1):131–41.CrossRefPubMedGoogle Scholar
  51. 51.
    Masuo K, Mikami H, Ogihara T, Tuck ML. Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young, nonobese Japanese population. Am J Hypertens. 1997;10(1):77–83.CrossRefPubMedGoogle Scholar
  52. 52.
    Flaa A, Mundal HH, Eide IK, Kjeldsen SE, Rostrup M. Sympathetic activity and cardiovascular risk factors in young men in the low, normal, and high blood pressure ranges. Hypertension. 2006;47(3):396–402.CrossRefPubMedGoogle Scholar
  53. 53.
    Flaa A, Kjeldsen SE, Eide IK, Rostrup M. Sympathoadrenal stress reactivity is a predictor of future blood pressure – an 18-year follow-up study. Hypertension. 2008;52(2):336–41.CrossRefPubMedGoogle Scholar
  54. 54.
    Flaa A, Sandvik L, Kjeldsen SE, Eide IK, Rostrup M. Does sympathoadrenal activity predict changes in body fat? – An 18-year follow-up study. Am J Clin Nutr. 2008;87(6):1596–601.CrossRefPubMedGoogle Scholar
  55. 55.
    Flaa A, Aksnes TA, Kjeldsen SE, Eide IK, Rostrup M. Increased sympathetic reactivity may predict insulin resistance – An 18-year follow-up study. Metabolism. 2008;57(10):1422–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Passon PG, Peuler JD. A simplified radioenzymatic assay for plasma norepinephrine and epinephrine. Anal Biochem. 1973;51:618–31.CrossRefPubMedGoogle Scholar
  57. 57.
    Peuler JD, Johnson GA. Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci. 1977;21(5):625–36.CrossRefPubMedGoogle Scholar
  58. 58.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRefGoogle Scholar
  59. 59.
    Brod J, FENCL V, HEJL Z, JIRKA J. Circulatory changes underlying blood pressure elevation during acute emotional stress (mental arithmetic) in normotensive and hypertensive subjects. Clin Sci. 1959;18:269–79.PubMedGoogle Scholar
  60. 60.
    Pickering TG, Gerin W. Area review: blood pressure reactivity: cardiovascular reactivity in the laboratory and the role of behavioral factors in hypertension: a critical review. Ann Behav Med. 1990;12(1):3–16.CrossRefGoogle Scholar
  61. 61.
    Hines EA, Brown GE. A standard stimulus for measuring vasomotor reactions: its application in the study of hypertension. Mayo Clin Proc. 1932;7:332–5.Google Scholar
  62. 62.
    Hohnloser SH, Klingenheben T. Basic autonomic tests. In: Malik M, editor. Clinical guide to cardiac autonomic tests. Dordrecht: Kleuwer Academic Publishers; 1998. p. 51–65.CrossRefGoogle Scholar
  63. 63.
    Mancia G, De Backer G, Dominiczak A, et al. Guidelines for the Management of Arterial Hypertension: the task force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105–87.CrossRefGoogle Scholar
  64. 64.
    Eliasson K, Hjemdahl P, Kahan T. Circulatory and sympatho-adrenal responses to stress in borderline and established hypertension. J Hypertens. 1983;1(2):131–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Swain A, Suls J. Reproducibility of blood pressure and heart rate reactivity: a meta-analysis. Psychophysiology. 1996;33(2):162–74.CrossRefPubMedGoogle Scholar
  66. 66.
    Kamarck TW, Lovallo WR. Cardiovascular reactivity to psychological challenge: conceptual and measurement considerations. Psychosom Med. 2003;65(1):9–21.CrossRefPubMedGoogle Scholar
  67. 67.
    Floras JS, Hassan MO, Jones JV, Sleight P. Pressor responses to laboratory stresses and daytime blood pressure variability. J Hypertens. 1987;5(6):715–9.CrossRefPubMedGoogle Scholar
  68. 68.
    Southard DR, Coates TJ, Kolodner K, Parker FC, Padgett NE, Kennedy HL. Relationship between mood and blood pressure in the natural environment: an adolescent population. Health Psychol. 1986;5(5):469–80.CrossRefPubMedGoogle Scholar
  69. 69.
    Van Egeren LF, Sparrow AW. Laboratory stress testing to assess real-life cardiovascular reactivity. Psychosom Med. 1989;51(1):1–9.CrossRefPubMedGoogle Scholar
  70. 70.
    Schneider RH, Julius S, Karunas R. Ambulatory blood pressure monitoring and laboratory reactivity in type A behavior and components. Psychosom Med. 1989;51(3):290–305.CrossRefPubMedGoogle Scholar
  71. 71.
    van Doornen LJ, van Blokland RW. The relationship between cardiovascular and catecholamine reactions to laboratory and real-life stress. Psychophysiology. 1992;29(2):173–81.CrossRefPubMedGoogle Scholar
  72. 72.
    Gehrking JA, Hines SM, Benrud-Larson LM, Opher-Gehrking TL, Low PA. What is the minimum duration of head-up tilt necessary to detect orthostatic hypotension? Clin Auton Res. 2005;15(2):71–5.CrossRefPubMedGoogle Scholar
  73. 73.
    Grassi G, Seravalle G, Bolla G, et al. Heart rate as a sympathetic marker during acute adrenergic challenge. J Hypertens. 2008;26(1):70–5.CrossRefPubMedGoogle Scholar
  74. 74.
    Kjeldsen SE, Schork NJ, Leren P, Eide IK. Arterial plasma norepinephrine correlates to blood pressure in middle-aged men with sustained essential hypertension. Am Heart J. 1989;118(4):775–81.CrossRefPubMedGoogle Scholar
  75. 75.
    James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res. 2001;9(Suppl 4):228S–33S.CrossRefPubMedGoogle Scholar
  76. 76.
    Misra A, Vikram NK. Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots. Nutrition. 2003;19(5):457–66.CrossRefPubMedGoogle Scholar
  77. 77.
    Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366(9497):1640–9.CrossRefPubMedGoogle Scholar
  78. 78.
    Clausen JO, Ibsen H, Dige-Petersen H, Borch-Johnsen K, Pedersen O. The importance of adrenaline, insulin and insulin sensitivity as determinants for blood pressure in young Danes. J Hypertens. 1995;13(5):499–505.CrossRefPubMedGoogle Scholar
  79. 79.
    Julius S. The evidence for a pathophysiologic significance of the sympathetic overactivity in hypertension. Clin Exp Hypertens. 1996;18(3–4):305–21.CrossRefPubMedGoogle Scholar
  80. 80.
    Mancia G. Bjorn Folkow Award Lecture. The sympathetic nervous system in hypertension. J Hypertens. 1997;15(12 Pt 2):1553–65.CrossRefPubMedGoogle Scholar
  81. 81.
    Fossum E, Hoieggen A, Reims HM, et al. High screening blood pressure is related to sympathetic nervous system activity and insulin resistance in healthy young men. Blood Press. 2004;13(2):89–94.CrossRefPubMedGoogle Scholar
  82. 82.
    Flaa A, Ekeberg O, Kjeldsen SE, Rostrup M. Personality may influence reactivity to stress. Biopsychosoc Med. 2007;1:5.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Julius S, Jamerson K, Mejia A, Krause L, Schork N, Jones K. The association of borderline hypertension with target organ changes and higher coronary risk. Tecumseh Blood Pressure study. JAMA. 1990;264(3):354–8.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    LeBlanc J, Cote J, Jobin M, Labrie A. Plasma catecholamines and cardiovascular responses to cold and mental activity. J Appl Physiol. 1979;47(6):1207–11.CrossRefPubMedGoogle Scholar
  85. 85.
    Georgiades A, de Faire U, Lemne C. Clinical prediction of normotension in borderline hypertensive men--a 10 year study. J Hypertens. 2004;22(3):471–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Jokiniitty JM, Majahalme SK, Kahonen MA, Tuomisto MT, Turjanmaa VM. Prediction of blood pressure level and need for antihypertensive medication: 10 years of follow-up. J Hypertens. 2001;19(7):1193–201.CrossRefPubMedGoogle Scholar
  87. 87.
    Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42(6):1206–52.CrossRefGoogle Scholar
  88. 88.
    Thomas CB, Duszynski KR. Blood pressure levels in young adulthood as predictors of hypertension and the fate of the cold pressor test. Johns Hopkins Med J. 1982;151(3):93–100.PubMedGoogle Scholar
  89. 89.
    Lovallo WR, Gerin W. Psychophysiological reactivity: mechanisms and pathways to cardiovascular disease. Psychosom Med. 2003;65(1):36–45.CrossRefPubMedGoogle Scholar
  90. 90.
    Gudmundsdottir H, Strand A, Hoieggen A, et al. Do screening blood pressure and plasma catecholamines predict development of hypertension? Twenty-year follow-up of middle-aged men. Blood Press. 2008;17(2):94–103.CrossRefPubMedGoogle Scholar
  91. 91.
    Egan BM. Neurohumoral, hemodynamic and microvascular changes as mechanisms of insulin resistance in hypertension: a provocative but partial picture. Int J Obes. 1991;15(Suppl 2):133–9.PubMedGoogle Scholar
  92. 92.
    Mancia G, Grassi G, Giannattasio C, Seravalle G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension. 1999;34(4 Pt 2):724–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Treiber FA, Kamarck T, Schneiderman N, Sheffield D, Kapuku G, Taylor T. Cardiovascular reactivity and development of preclinical and clinical disease states. Psychosom Med. 2003;65(1):46–62.CrossRefPubMedGoogle Scholar
  94. 94.
    Julius S, Li Y, Brant D, Krause L, Buda AJ. Neurogenic pressor episodes fail to cause hypertension, but do induce cardiac hypertrophy. Hypertension. 1989;13(5):422–9.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Anderson DE, Kearns WD, Better WE. Progressive hypertension in dogs by avoidance conditioning and saline infusion. Hypertension. 1983;5(3):286–91.CrossRefPubMedGoogle Scholar
  96. 96.
    Folkow B. Pathophysiology of hypertension: differences between young and elderly. J Hypertens Suppl. 1993;11(4):S21–4.PubMedGoogle Scholar
  97. 97.
    Rahn KH, Barenbrock M, Hausberg M. The sympathetic nervous system in the pathogenesis of hypertension. J Hypertens Suppl. 1999;17(3):S11–4.CrossRefPubMedGoogle Scholar
  98. 98.
    Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106(4):473–81.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Ross AE, Flaa A, Hoieggen A, Reims H, Eide IK, Kjeldsen SE. Gender specific sympathetic and hemorrheological responses to mental stress in healthy young subjects. Scand Cardiovasc J. 2001;35(5):307–12.CrossRefPubMedGoogle Scholar
  100. 100.
    Reims HM, Sevre K, Hoieggen A, Fossum E, Eide I, Kjeldsen SE. Blood viscosity: effects of mental stress and relations to autonomic nervous system function and insulin sensitivity. Blood Press. 2005;14(3):159–69.CrossRefPubMedGoogle Scholar
  101. 101.
    Esler M, Lambert G, Brunner-La Rocca HP, Vaddadi G, Kaye D. Sympathetic nerve activity and neurotransmitter release in humans: translation from pathophysiology into clinical practice. Acta Physiol Scand. 2003;177(3):275–84.CrossRefPubMedGoogle Scholar
  102. 102.
    Lohse MJ. Molecular mechanisms of membrane receptor desensitization. Biochim Biophys Acta. 1993;1179(2):171–88.CrossRefPubMedGoogle Scholar
  103. 103.
    Hausdorff WP, Caron MG, Lefkowitz RJ. Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J. 1990;4(11):2881–9.CrossRefPubMedGoogle Scholar
  104. 104.
    Julius S, Valentini M, Palatini P. Overweight and hypertension: A 2-way street? Hypertension. 2000;35(3):807–13.CrossRefPubMedGoogle Scholar
  105. 105.
    Seals DR, Bell C. Chronic sympathetic activation: consequence and cause of age-associated obesity? Diabetes. 2004;53(2):276–84.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Shibao C, Gamboa A, Diedrich A, et al. Autonomic contribution to blood pressure and metabolism in obesity. Hypertension. 2007;49(1):27–33.CrossRefPubMedGoogle Scholar
  107. 107.
    Reims HM, Hoieggen A, Fossum E, Rostrup M, Eide I, Kjeldsen SE. Glucose disposal rates calculated from 60- to 90-minute isoglycemic hyperinsulinemic glucose clamp correlate with cardiovascular risk factors in borderline hypertensive young men. Metabolism. 2001;50(10):1175–80.CrossRefPubMedGoogle Scholar
  108. 108.
    Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia. 2000;43(5):533–49.CrossRefPubMedGoogle Scholar
  109. 109.
    Natali A, Santoro D, Palombo C, Cerri M, Ghione S, Ferrannini E. Impaired insulin action on skeletal muscle metabolism in essential hypertension. Hypertension. 1991;17(2):170–8.CrossRefPubMedGoogle Scholar
  110. 110.
    Grassi G, Dell'Oro R, Facchini A, Quarti TF, Bolla GB, Mancia G. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens. 2004;22(12):2363–9.CrossRefPubMedGoogle Scholar
  111. 111.
    Hamburg S, Hendler R, Sherwin RS. Influence of small increments of epinephrine on glucose tolerance in normal humans. Ann Intern Med. 1980;93(4):566–8.CrossRefPubMedGoogle Scholar
  112. 112.
    Zeman RJ, Ludemann R, Easton TG, Etlinger JD. Slow to fast alterations in skeletal muscle fibers caused by clenbuterol, a beta 2-receptor agonist. Am J Phys. 1988;254(6 Pt 1):E726–32.Google Scholar
  113. 113.
    Cohn JN. Relationship of plasma volume changes to resistance and capacitance vessel effects of sympathomimetic amines and angiotensin in man. Clin Sci. 1966;30(2):267–78.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Hoieggen A, Fossum E, Moan A, Enger E, Kjeldsen SE. Whole-blood viscosity and the insulin-resistance syndrome. J Hypertens. 1998;16(2):203–10.CrossRefPubMedGoogle Scholar
  115. 115.
    Hoieggen A, Fossum E, Nesbitt SD, Palmieri V, Kjeldsen SE. Blood viscosity, plasma adrenaline and fasting insulin in hypertensive patients with left ventricular hypertrophy. ICARUS, a LIFE Substudy. Insulin CARotids US Scandinavica. Blood Press. 2000;9(2–3):83–90.CrossRefPubMedGoogle Scholar
  116. 116.
    Hassellund SS, Flaa A, Sandvik L, Kjeldsen SE, Rostrup M. Long-term stability of cardiovascular and catecholamine responses to stress tests: an 18-year follow-up study. Hypertension. 2010;55:131–6.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Arnljot Flaa
    • 1
    • 2
  • Morten Rostrup
    • 2
    • 3
    • 4
  • Sverre E. Kjeldsen
    • 1
    • 2
    • 4
    Email author
  • Ivar Eide
    • 2
    • 4
    • 5
  1. 1.Department of CardiologyOslo University Hospital, UllevaalOsloNorway
  2. 2.Section of Cardiovascular and Renal Research, Medical ClinicOslo University Hospital, UllevaalOsloNorway
  3. 3.Department of Acute MedicineOslo University Hospital, UllevaalOsloNorway
  4. 4.Faculty of Medicine, Institute for Clinical MedicineUniversity of OsloOsloNorway
  5. 5.Department of NephrologyOslo University Hospital, UllevaalOsloNorway

Personalised recommendations