Blood Pressure Variability

  • Gianfranco ParatiEmail author
  • Juan Eugenio Ochoa
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)


Blood pressure (BP) values change significantly over time in response to environmental, behavioral, and emotional stimuli. These variations represent a complex phenomenon, and their assessment is possible by means of different BP measurement methodologies over different time windows: from beat to beat [very short-term BP variability (BPV)], within 24 h (from minute to minute, hour to hour and from day to night; short-term BPV), over different days (midterm day-by-day BPV), or between clinic visits performed over weeks, months, seasons, and years (long-term BPV) [1]. While in physiological conditions these variations represent an adaptive response to environmental stimulations from daily life, they may also reflect, however, alterations in cardiovascular regulatory mechanisms or underlying pathological conditions. The clinical significance of BPV has been supported by a large body of evidence showing that the BP-related cardiovascular risk may depend not only on average BP levels but also on the degree of BPV. Either in the short term (24 h), in the midterm (day-by-day), or in the long term (visit-to-visit), increasing values of BPV have been shown to be associated with development, progression, and severity of cardiac, vascular, and renal organ damage and with an increased risk of cardiovascular events and cardiovascular and all-cause mortality (Fig. 28.1). The evidence is limited, however, regarding the question on whether increasing values of BP variability (considered as an early marker of autonomic dysregulation) may represent also a marker of future hypertension during the prehypertensive (or high normal BP) state. Aim of this chapter is to review the current evidence in the field of BPV regarding its mechanisms, the methodological aspects that should be considered for its assessment, its relevance and significance for cardiovascular prognosis as well as its potential for application in clinical practice. In its last part a brief mention is made on the possible role of BPV as a predictor of future hypertension, as well as on the possibility that the assessment of BPV might contribute to improve the management of subjects with high normal office BP elevation, also defined as prehypertension.


  1. 1.
    Parati G, Ochoa JE, Lombardi C, Bilo G. Assessment and management of blood-pressure variability. Nat Rev Cardiol. 2013;10(3):143–55.CrossRefPubMedGoogle Scholar
  2. 2.
    Mancia G, Parati G, Pomidossi G, Casadei R, Di Rienzo M, Zanchetti A. Arterial baroreflexes and blood pressure and heart rate variabilities in humans. Hypertension. 1986;8(2):147–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25(6):1276–86.CrossRefPubMedGoogle Scholar
  4. 4.
    Narkiewicz K, Winnicki M, Schroeder K, Phillips BG, Kato M, Cwalina E, et al. Relationship between muscle sympathetic nerve activity and diurnal blood pressure profile. Hypertension. 2002;39(1):168–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Parati G, Faini A, Valentini M. Blood pressure variability: its measurement and significance in hypertension. Curr Hypertens Rep. 2006;8(3):199–204.CrossRefPubMedGoogle Scholar
  6. 6.
    Kotsis V, Stabouli S, Karafillis I, Papakatsika S, Rizos Z, Miyakis S, et al. Arterial stiffness and 24 h ambulatory blood pressure monitoring in young healthy volunteers: the early vascular ageing Aristotle University Thessaloniki Study (EVA-ARIS Study). Atherosclerosis. 2011;219(1):194–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Schillaci G, Bilo G, Pucci G, Laurent S, Macquin-Mavier I, Boutouyrie P, et al. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension. 2012;60(2):369–77.CrossRefGoogle Scholar
  8. 8.
    Okada H, Fukui M, Tanaka M, Inada S, Mineoka Y, Nakanishi N, et al. Visit-to-visit variability in systolic blood pressure is correlated with diabetic nephropathy and atherosclerosis in patients with type 2 diabetes. Atherosclerosis. 2012;220(1):155–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Bombelli M, Cuspidi C, et al. Adrenergic, metabolic, and reflex abnormalities in reverse and extreme dipper hypertensives. Hypertension. 2008;52(5):925–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Fujii T, Uzu T, Nishimura M, Takeji M, Kuroda S, Nakamura S, et al. Circadian rhythm of natriuresis is disturbed in nondipper type of essential hypertension. Am J Kidney Dis. 1999;33(1):29–35.CrossRefPubMedGoogle Scholar
  11. 11.
    Verdecchia P, Schillaci G, Gatteschi C, Zampi I, Battistelli M, Bartoccini C, et al. Blunted nocturnal fall in blood pressure in hypertensive women with future cardiovascular morbid events. Circulation. 1993;88(3):986–92.CrossRefPubMedGoogle Scholar
  12. 12.
    Haynes WG. Role of leptin in obesity-related hypertension. Exp Physiol. 2005;90(5):683–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Quinaglia T, Martins LC, Figueiredo VN, Santos RC, Yugar-Toledo JC, Martin JF, et al. Non-dipping pattern relates to endothelial dysfunction in patients with uncontrolled resistant hypertension. J Hum Hypertens. 2011;25(11):656–64.CrossRefPubMedGoogle Scholar
  14. 14.
    Holt-Lunstad J, Steffen PR. Diurnal cortisol variation is associated with nocturnal blood pressure dipping. Psychosom Med. 2007;69(4):339–43.CrossRefPubMedGoogle Scholar
  15. 15.
    Panarelli M, Terzolo M, Piovesan A, Osella G, Paccotti P, Pinna G, et al. 24-hour profiles of blood pressure and heart rate in Cushing’s syndrome. Evidence for differential control of cardiovascular variables by glucocorticoids. Ann Ital Med Int. 1990;5(1):18–25.PubMedGoogle Scholar
  16. 16.
    Mancia G, Parati G, di Rienzo M, Zanchetti A. Blood pressure variability. In: Mancia G, Zanchetti A, editors. Handbook of hypertension: pathophysiology of hypertension. Amsterdam: Elsevier Science; 1997. p. 117–69.Google Scholar
  17. 17.
    Mancia G, Di Rienzo M, Parati G. Ambulatory blood pressure monitoring use in hypertension research and clinical practice. Hypertension. 1993;21(4):510–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Parati G, Ochoa JE, Bilo G. Blood pressure variability, cardiovascular risk, and risk for renal disease progression. Curr Hypertens Rep. 2012;14(5):421–31.CrossRefPubMedGoogle Scholar
  19. 19.
    di Rienzo M, Grassi G, Pedotti A, Mancia G. Continuous vs intermittent blood pressure measurements in estimating 24-hour average blood pressure. Hypertension. 1983;5(2):264–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Bilo G, Giglio A, Styczkiewicz K, Caldara G, Maronati A, Kawecka-Jaszcz K, et al. A new method for assessing 24-h blood pressure variability after excluding the contribution of nocturnal blood pressure fall. J Hypertens. 2007;25(10):2058–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Mena L, Pintos S, Queipo NV, Aizpurua JA, Maestre G, Sulbaran T. A reliable index for the prognostic significance of blood pressure variability. J Hypertens. 2005;23(3):505–11.CrossRefPubMedGoogle Scholar
  22. 22.
    Hansen TW, Thijs L, Li Y, Boggia J, Kikuya M, Bjorklund-Bodegard K, et al. Prognostic value of reading-to-reading blood pressure variability over 24 hours in 8938 subjects from 11 populations. Hypertension. 2010;55(4):1049–57.CrossRefPubMedGoogle Scholar
  23. 23.
    O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, et al. European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013;31(9):1731–68.CrossRefGoogle Scholar
  24. 24.
    Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlof B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375(9718):895–905.CrossRefPubMedGoogle Scholar
  25. 25.
    Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension. 2005;45(1):142–61.CrossRefGoogle Scholar
  26. 26.
    Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5(1):93–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993;11(10):1133–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Madden JM, O’Flynn AM, Fitzgerald AP, Kearney PM. Correlation between short-term blood pressure variability and left-ventricular mass index: a meta-analysis. Hypertens Res. 2016;39(3):171–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Mancia G, Parati G, Hennig M, Flatau B, Omboni S, Glavina F, et al. Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J Hypertens. 2001;19(11):1981–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Shintani Y, Kikuya M, Hara A, Ohkubo T, Metoki H, Asayama K, et al. Ambulatory blood pressure, blood pressure variability and the prevalence of carotid artery alteration: the Ohasama study. J Hypertens. 2007;25(8):1704–10.CrossRefPubMedGoogle Scholar
  31. 31.
    Tatasciore A, Renda G, Zimarino M, Soccio M, Bilo G, Parati G, et al. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension. 2007;50(2):325–32.CrossRefPubMedGoogle Scholar
  32. 32.
    Manios E, Tsagalis G, Tsivgoulis G, Barlas G, Koroboki E, Michas F, et al. Time rate of blood pressure variation is associated with impaired renal function in hypertensive patients. J Hypertens. 2009;27(11):2244–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Veloudi P, Blizzard CL, Head GA, Abhayaratna WP, Stowasser M, Sharman JE. Blood pressure variability and prediction of target organ damage in patients with uncomplicated hypertension. Am J Hypertens. 2016;29(9):1046–54.CrossRefPubMedGoogle Scholar
  34. 34.
    Wei FF, Li Y, Zhang L, Xu TY, Ding FH, Wang JG, et al. Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated Chinese. Hypertension. 2014;63(4):790–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Palatini P, Reboldi G, Beilin LJ, Casiglia E, Eguchi K, Imai Y, et al. Added predictive value of night-time blood pressure variability for cardiovascular events and mortality: the Ambulatory Blood Pressure-International Study. Hypertension. 2014;64(3):487–93.CrossRefPubMedGoogle Scholar
  36. 36.
    Mancia G, Bombelli M, Facchetti R, Madotto F, Corrao G, Trevano FQ, et al. Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension. 2007;49(6):1265–70.CrossRefGoogle Scholar
  37. 37.
    Niiranen TJ, Maki J, Puukka P, Karanko H, Jula AM. Office, home, and ambulatory blood pressures as predictors of cardiovascular risk. Hypertension. 2014;64(2):281–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Hansen TW, Li Y, Boggia J, Thijs L, Richart T, Staessen JA. Predictive role of the nighttime blood pressure. Hypertension. 2011;57(1):3–10.CrossRefPubMedGoogle Scholar
  39. 39.
    Fagard RH, Celis H, Thijs L, Staessen JA, Clement DL, De Buyzere ML, et al. Daytime and nighttime blood pressure as predictors of death and cause-specific cardiovascular events in hypertension. Hypertension. 2008;51(1):55–61.CrossRefPubMedGoogle Scholar
  40. 40.
    Metoki H, Ohkubo T, Kikuya M, Asayama K, Obara T, Hashimoto J, et al. Prognostic significance for stroke of a morning pressor surge and a nocturnal blood pressure decline: the Ohasama study. Hypertension. 2006;47(2):149–54.CrossRefPubMedGoogle Scholar
  41. 41.
    Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation. 2003;107(10):1401–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang Y, Agnoletti D, Safar ME, Blacher J. Effect of antihypertensive agents on blood pressure variability: the Natrilix SR versus candesartan and amlodipine in the reduction of systolic blood pressure in hypertensive patients (X-CELLENT) study. Hypertension. 2011;58(2):155–60.CrossRefPubMedGoogle Scholar
  43. 43.
    Levi-Marpillat N, Macquin-Mavier I, Tropeano AI, Parati G, Maison P. Antihypertensive drug classes have different effects on short-term blood pressure variability in essential hypertension. Hypertens Res. 2014;37(6):585–90.CrossRefPubMedGoogle Scholar
  44. 44.
    Murakami S, Otsuka K, Kubo Y, Shinagawa M, Matsuoka O, Yamanaka T, et al. Weekly variation of home and ambulatory blood pressure and relation between arterial stiffness and blood pressure measurements in community-dwelling hypertensives. Clin Exp Hypertens. 2005;27:231–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Niiranen TJ, Hanninen MR, Johansson J, Reunanen A, Jula AM. Home-measured blood pressure is a stronger predictor of cardiovascular risk than office blood pressure: the Finn-Home study. Hypertension. 2010;55(6):1346–51.CrossRefPubMedGoogle Scholar
  46. 46.
    Thijs L, Staessen JA, Celis H, Fagard R, De Cort P, de Gaudemaris R, et al. The international database of self-recorded blood pressures in normotensive and untreated hypertensive subjects. Blood Press Monit. 1999;4(2):77–86.CrossRefPubMedGoogle Scholar
  47. 47.
    Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K. Visit-to-visit blood pressure variations: new independent determinants for carotid artery measures in the elderly at high risk of cardiovascular disease. J Am Soc Hypertens. 2011;5(3):184–92.CrossRefPubMedGoogle Scholar
  48. 48.
    Niiranen TJ, Asayama K, Thijs L, Johansson JK, Ohkubo T, Kikuya M, et al. Outcome-driven thresholds for home blood pressure measurement: international database of home blood pressure in relation to cardiovascular outcome. Hypertension. 2013;61(1):27–34.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Okada T, Nakao T, Matsumoto H, Nagaoka Y, Tomaru R, Iwasawa H, et al. [Day-by-day variability of home blood pressure in patients with chronic kidney disease]. Nihon Jinzo Gakkai Shi 2008;50(5):588–596.Google Scholar
  50. 50.
    Ishikura K, Obara T, Kato T, Kikuya M, Shibamiya T, Shinki T, et al. Associations between day-by-day variability in blood pressure measured at home and antihypertensive drugs: the J-HOME-Morning study. Clin Exp Hypertens. 2012;34(4):297–304.CrossRefPubMedGoogle Scholar
  51. 51.
    Parati G, Stergiou GS, Asmar R, Bilo G, de Leeuw P, Imai Y, et al. European Society of Hypertension guidelines for blood pressure monitoring at home: a summary report of the Second International Consensus Conference on Home Blood Pressure Monitoring. J Hypertens. 2008;26(8):1505–26.CrossRefPubMedGoogle Scholar
  52. 52.
    Stergiou GS, Ntineri A, Kollias A, Ohkubo T, Imai Y, Parati G. Blood pressure variability assessed by home measurements: a systematic review. Hypertens Res. 2014;37(6):565–72.CrossRefPubMedGoogle Scholar
  53. 53.
    Shibasaki S, Hoshide S, Eguchi K, Ishikawa J, Kario K, Japan Morning Surge-Home Blood Pressure Study Group. Increase trend in home blood pressure on a single occasion is associated with B-type natriuretic peptide and the estimated glomerular filtration rate. Am J Hypertens. 2015;28(9):1098–105.CrossRefPubMedGoogle Scholar
  54. 54.
    Ushigome E, Fukui M, Hamaguchi M, Tanaka T, Atsuta H, Mogami S, et al. Maximum home systolic blood pressure is a useful indicator of arterial stiffness in patients with type 2 diabetes mellitus: post hoc analysis of a cross-sectional multicenter study. Diabetes Res Clin Pract. 2014;105(3):344–51.CrossRefPubMedGoogle Scholar
  55. 55.
    Liu Z, Zhao Y, Lu F, Zhang H, Diao Y. Day-by-day variability in self-measured blood pressure at home: effects on carotid artery atherosclerosis, brachial flow-mediated dilation, and endothelin-1 in normotensive and mild-moderate hypertensive individuals. Blood Press Monit. 2013;18(6):316–25.CrossRefPubMedGoogle Scholar
  56. 56.
    Matsui Y, O'Rourke MF, Hoshide S, Ishikawa J, Shimada K, Kario K. Combined effect of angiotensin II receptor blocker and either a calcium channel blocker or diuretic on day-by-day variability of home blood pressure: the Japan Combined Treatment With Olmesartan and a Calcium-Channel Blocker Versus Olmesartan and Diuretics Randomized Efficacy Study. Hypertension. 2012;59(6):1132–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Ushigome E, Fukui M, Hamaguchi M, Senmaru T, Sakabe K, Tanaka M, et al. The coefficient variation of home blood pressure is a novel factor associated with macroalbuminuria in type 2 diabetes mellitus. Hypertens Res. 2011;34(12):1271–5.CrossRefPubMedGoogle Scholar
  58. 58.
    Matsui Y, Ishikawa J, Eguchi K, Shibasaki S, Shimada K, Kario K. Maximum value of home blood pressure: a novel indicator of target organ damage in hypertension. Hypertension. 2011;57(6):1087–93.CrossRefPubMedGoogle Scholar
  59. 59.
    Juhanoja EP, Niiranen TJ, Johansson JK, Puukka PJ, Thijs L, Asayama K, et al. Outcome-driven thresholds for increased home blood pressure variability. Hypertension. 2017;69(4):599–607.CrossRefPubMedGoogle Scholar
  60. 60.
    Stevens SL, Wood S, Koshiaris C, Law K, Glasziou P, Stevens RJ, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. BMJ. 2016;354:i4098.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Johansson JK, Niiranen TJ, Puukka PJ, Jula AM. Prognostic value of the variability in home-measured blood pressure and heart rate: the Finn-Home Study. Hypertension. 2012;59(2):212–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Ohkubo T, Asayama K, Kikuya M, Metoki H, Hoshi H, Hashimoto J, et al. How many times should blood pressure be measured at home for better prediction of stroke risk? Ten-year follow-up results from the Ohasama study. J Hypertens. 2004;22(6):1099–104.CrossRefPubMedGoogle Scholar
  63. 63.
    Hoshide S, Yano Y, Shimizu M, Eguchi K, Ishikawa J, Kario K. Is home blood pressure variability itself an interventional target beyond lowering mean home blood pressure during anti-hypertensive treatment? Hypertens Res. 2012;35(8):862–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Mancia G, Facchetti R, Parati G, Zanchetti A. Visit-to-visit blood pressure variability in the European Lacidipine Study on Atherosclerosis: methodological aspects and effects of antihypertensive treatment. J Hypertens. 2012;30(6):1241–51.CrossRefPubMedGoogle Scholar
  65. 65.
    Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension. 2011;57(2):160–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Myers MG, Godwin M, Dawes M, Kiss A, Tobe SW, Grant FC, et al. Conventional versus automated measurement of blood pressure in primary care patients with systolic hypertension: randomised parallel design controlled trial. BMJ. 2011;342:d286.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Stergiou GS, Myrsilidi A, Kollias A, Destounis A, Roussias L, Kalogeropoulos P. Seasonal variation in meteorological parameters and office, ambulatory and home blood pressure: predicting factors and clinical implications. Hypertens Res. 2015;38(12):869–75.CrossRefPubMedGoogle Scholar
  68. 68.
    Modesti PA, Morabito M, Bertolozzi I, Massetti L, Panci G, Lumachi C, et al. Weather-related changes in 24-hour blood pressure profile: effects of age and implications for hypertension management. Hypertension. 2006;47(2):155–61.CrossRefPubMedGoogle Scholar
  69. 69.
    Sega R, Cesana G, Bombelli M, Grassi G, Stella ML, Zanchetti A, et al. Seasonal variations in home and ambulatory blood pressure in the PAMELA population. Pressione Arteriose Monitorate E Loro Associazioni. J Hypertens. 1998;16(11):1585–92.CrossRefPubMedGoogle Scholar
  70. 70.
    Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2007;25(6):1105–87.CrossRefGoogle Scholar
  71. 71.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206–52.CrossRefGoogle Scholar
  72. 72.
    O’Brien E, Asmar R, Beilin L, Imai Y, Mallion JM, Mancia G, et al. European Society of Hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J Hypertens. 2003;21(5):821–48.CrossRefPubMedGoogle Scholar
  73. 73.
    Muntner P, Joyce C, Levitan EB, Holt E, Shimbo D, Webber LS, et al. Reproducibility of visit-to-visit variability of blood pressure measured as part of routine clinical care. J Hypertens. 2011;29(12):2332–8.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Levitan EB, Kaciroti N, Oparil S, Julius S, Muntner P. Relationships between metrics of visit-to-visit variability of blood pressure. J Hum Hypertens. 2013;27(10):589–93.CrossRefPubMedGoogle Scholar
  75. 75.
    Levitan EB, Kaciroti N, Oparil S, Julius S, Muntner P. Blood pressure measurement device, number and timing of visits, and intra-individual visit-to-visit variability of blood pressure. J Clin Hypertens (Greenwich). 2012;14(11):744–50.CrossRefGoogle Scholar
  76. 76.
    Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlof B, et al. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010;9(5):469–80.CrossRefPubMedGoogle Scholar
  77. 77.
    Okada H, Fukui M, Tanaka M, Matsumoto S, Mineoka Y, Nakanishi N, et al. Visit-to-visit blood pressure variability is a novel risk factor for the development and progression of diabetic nephropathy in patients with type 2 diabetes. Diabetes Care. 2013;36(7):1908–12.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Parati G, Liu X, Ochoa JE. Clinical relevance of visit-to-visit blood pressure variability: impact on renal outcomes. J Hum Hypertens. 2014;28(7):403–9.CrossRefPubMedGoogle Scholar
  79. 79.
    Masugata H, Senda S, Murao K, Inukai M, Hosomi N, Iwado Y, et al. Visit-to-visit variability in blood pressure over a 1-year period is a marker of left ventricular diastolic dysfunction in treated hypertensive patients. Hypertens Res. 2011;34(7):846–50.CrossRefPubMedGoogle Scholar
  80. 80.
    Okada R, Okada A, Okada T, Nanasato M, Wakai K. Visit-to-visit blood pressure variability is a marker of cardiac diastolic function and carotid atherosclerosis. BMC Cardiovasc Disord. 2014;14:188.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Tedla YG, Yano Y, Carnethon M, Greenland P. Association between long-term blood pressure variability and 10-year progression in arterial stiffness: the multiethnic study of atherosclerosis. Hypertension. 2017;69(1):118–27.CrossRefPubMedGoogle Scholar
  82. 82.
    Wang J, Shi X, Ma C, Zheng H, Xiao J, Bian H, et al. Visit-to-visit blood pressure variability is a risk factor for all-cause mortality and cardiovascular disease: a systematic review and meta-analysis. J Hypertens. 2017;35(1):10–7.CrossRefPubMedGoogle Scholar
  83. 83.
    Diaz KM, Tanner RM, Falzon L, Levitan EB, Reynolds K, Shimbo D, et al. Visit-to-visit variability of blood pressure and cardiovascular disease and all-cause mortality: a systematic review and meta-analysis. Hypertension. 2014;64(5):965–82.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Ohkuma T, Woodward M, Jun M, Muntner P, Hata J, Colagiuri S, et al. Prognostic value of variability in systolic blood pressure related to vascular events and premature death in type 2 diabetes mellitus: the ADVANCE-ON study. Hypertension. 2017;70(2):461–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Blacher J, Safar ME, Ly C, Szabo de Edelenyi F, Hercberg S, Galan P. Blood pressure variability: cardiovascular risk integrator or independent risk factor? J Hum Hypertens. 2015;29(2):122–6.CrossRefPubMedGoogle Scholar
  86. 86.
    Mancia G, Facchetti R, Parati G, Zanchetti A. Visit-to-visit blood pressure variability, carotid atherosclerosis, and cardiovascular events in the European Lacidipine Study on Atherosclerosis. Circulation. 2012;126(5):569–78.CrossRefPubMedGoogle Scholar
  87. 87.
    Mehlum MH, Liestol K, Kjeldsen SE, Julius S, Hua TA, Rothwell PM, et al. Blood pressure variability and risk of cardiovascular events and death in patients with hypertension and different baseline risks. Eur Heart J. 2018. Scholar
  88. 88.
    Gosmanova EO, Mikkelsen MK, Molnar MZ, Lu JL, Yessayan LT, Kalantar-Zadeh K, et al. Association of systolic blood pressure variability with mortality, coronary heart disease, stroke, and renal disease. J Am Coll Cardiol. 2016;68(13):1375–86.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Webb AJ, Fischer U, Mehta Z, Rothwell PM. Effects of antihypertensive-drug class on interindividual variation in blood pressure and risk of stroke: a systematic review and meta-analysis. Lancet. 2010;375(9718):906–15.CrossRefPubMedGoogle Scholar
  90. 90.
    Wang JG, Yan P, Jeffers BW. Effects of amlodipine and other classes of antihypertensive drugs on long-term blood pressure variability: evidence from randomized controlled trials. J Am Soc Hypertens. 2014;8(5):340–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Mancia G, Bombelli M, Facchetti R, Madotto F, Quarti-Trevano F, Polo Friz H, et al. Long-term risk of sustained hypertension in white-coat or masked hypertension. Hypertension. 2009;54(2):226–32.CrossRefGoogle Scholar
  92. 92.
    Siven SS, Niiranen TJ, Kantola IM, Jula AM. White-coat and masked hypertension as risk factors for progression to sustained hypertension: the Finn-Home study. J Hypertens. 2016;34(1):54–60.CrossRefPubMedGoogle Scholar
  93. 93.
    Bidlingmeyer I, Burnier M, Bidlingmeyer M, Waeber B, Brunner HR. Isolated office hypertension: a prehypertensive state? J Hypertens. 1996;14(3):327–32.CrossRefPubMedGoogle Scholar
  94. 94.
    Kim KA, Stebbins CL, Choi HM, Nho H, Kim JK. Mechanisms Underlying Exaggerated Metaboreflex Activation in Prehypertensive Men. Med Sci Sports Exerc. 2015;47(8):1605–12.CrossRefPubMedGoogle Scholar
  95. 95.
    Le VV, Mitiku T, Sungar G, Myers J, Froelicher V. The blood pressure response to dynamic exercise testing: a systematic review. Prog Cardiovasc Dis. 2008;51(2):135–60.CrossRefPubMedGoogle Scholar
  96. 96.
    Holmqvist L, Mortensen L, Kanckos C, Ljungman C, Mehlig K, Manhem K. Exercise blood pressure and the risk of future hypertension. J Hum Hypertens. 2012;26(12):691–5.CrossRefPubMedGoogle Scholar
  97. 97.
    Zachariah PK, Sheps SG, Bailey KR, Wiltgen CM, Moore AG. Age-related characteristics of ambulatory blood pressure load and mean blood pressure in normotensive subjects. JAMA. 1991;265(11):1414–7.CrossRefPubMedGoogle Scholar
  98. 98.
    White WB. Blood pressure load and target organ effects in patients with essential hypertension. J Hypertens Suppl. 1991;9(8):S39–41.PubMedGoogle Scholar
  99. 99.
    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2017.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Istituto Auxologico Italiano, IRCCS, Department of CardiovascularNeural and Metabolic Sciences, San Luca HospitalMilanItaly
  2. 2.Department of Medicine and SurgeryUniversity of Milano-BicoccaMilanItaly

Personalised recommendations