The Role of the Brain in Neurogenic Prehypertension

  • Gino Seravalle
  • Dagmara Hering
  • Guido Grassi
  • Krzysztof NarkiewiczEmail author
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)


The association between blood pressure (BP) levels and increased risk for cardiovascular (CV) events is a continuum. The negative impact of elevated BP on patient outcomes is evident in the prehypertensive state which includes both subjects with normal (120–129/80–84 mmHg) and high-normal (130–139/85–89 mmHg) BP. The underlying pathophysiology linking prehypertension to poor CV prognosis is complex and not entirely understood. Available evidence indicates that particular consideration should be given to subjects in the upper end of BP values (stage 2 prehypertension), in whom neurohumoral activation with heightened activity of the sympathetic nervous system (SNS) and renin-angiotensin system (RAS), along with the presence of CV risk factors, play a causative role in BP initiation, adverse complications, and transition to hypertension. Therapy with candesartan found an absolute reduction in new-onset hypertension in subjects with high-normal BP, possibly through an inhibition of relevant neurohormonal pathways acting on the brain RAS and sympathetic outflow. However, until randomized clinical trials prove benefits of antihypertensive therapy on hard CV endpoints in stage 2 prehypertension, intensive lifestyle interventions should be widely implemented to prevent the incidence of hypertension.


Blood pressure High-normal blood pressure Sympathetic nervous system Haemodynamics Heredity 



Conflict of Interest disclosures: none.

Each author does not have any personal or financial relationships that have any potential to inappropriately influence the manuscript; there are no financial or other potential conflicts of interest including involvement with any organization with a direct financial, intellectual, or other interest in the manuscript. In addition there are no grants and sources of financial support related to the topic of the manuscript.

The authors of this manuscript have certified that they comply with the Principles of Ethical Publishing.


  1. 1.
    Julius S, Schork MA. Borderline hypertension—a critical review. J Chronic Dis. 1971;23:723–54.CrossRefPubMedGoogle Scholar
  2. 2.
    The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch Intern Med. 1997;157:2413–46.Google Scholar
  3. 3.
    Mancia G, De Backer G, Dominiczak A, et al. 2007 Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). J Hypertens. 2007;25:1105–87.CrossRefPubMedGoogle Scholar
  4. 4.
    Yamada Y, Miyajima E, Tochikubo O, Matsukawa T, Shionoiri H, Ishii M, Kaneko Y. Impaired baroreflex changes in muscle sympathetic nerve activity in adolescents who have a family history of essential hypertension. J Hypertens. 1988;6:S525–8.CrossRefGoogle Scholar
  5. 5.
    Davis JT, Rao F, Naqshbandi D, Fung MM, Zhang K, Schork AJ, Nievergelt CM, Ziegler MG, O’Connor DT. Autonomic and hemodynamic origins of prehypertension: central role of heredity. J Am Coll Cardiol. 2012;59:2206–16.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang M, Ardile K, Wacholder S, Weich R, Chanock S, O’Brien TR. Genetic variations in CC chemokine receptors and hypertension. Am J Hypertens. 2006;19:67–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak AF. Genetics of hypertension: from experimental animals to humans. Biochim Biophys Acta. 2010;1802:1299–308.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hottenga JJ, Whitfield JB, de Geus EJ, Booms DI, Martin NG. Heritability and stability of resting blood pressure in Australia twins. Twin Res Hum Genet. 2006;9:205–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies C. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.CrossRefGoogle Scholar
  10. 10.
    Qureshi AI, Suri MF, Kirmani JF, Divani AA, Mohammad Y. Is prehypertension a risk factor for cardiovascular diseases? Stroke. 2005;36(9):1859–63.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ninomiya T, Kubo M, Doi Y, Yonemoto K, Tanizaki Y, Tsuruya K, et al. Prehypertension increases the risk for renal arteriosclerosis in autopsies: the Hisayama Study. J Am Soc Nephrol. 2007;18(7):2135–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Wikstrom AK, Gunnarsdottir J, Nelander M, Simic M, Stephansson O, Cnattingius S. Prehypertension in pregnancy and risks of small for gestational age infant and stillbirth. Hypertension. 2016;67(3):640–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Greenlund KJ, Croft JB, Mensah GA. Prevalence of heart disease and stroke risk factors in persons with prehypertension in the United States, 1999–2000. Arch Intern Med. 2004;164(19):2113–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med. 2006;354(16):1685–97.CrossRefPubMedGoogle Scholar
  15. 15.
    Egan BM, Julius S. Prehypertension: risk stratification and management considerations. Curr Hypertens Rep. 2008;10(5):359–66.CrossRefPubMedGoogle Scholar
  16. 16.
    Masuo K, Kawaguchi H, Mikami H, Ogihara T, Tuck ML. Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation. Hypertension. 2003;42(4):474–80.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hering D, Kara T, Kucharska W, Somers VK, Narkiewicz K. Longitudinal tracking of muscle sympathetic nerve activity and its relationship with blood pressure in subjects with prehypertension. Blood Press. 2016;25(3):184–92.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Seravalle G, Lonati L, Buzzi S, Cairo M, Quarti trevano F, Dell’Oro R, Facchetti R, Mancia G, Grassi G. Sympathetic nerve traffic and baroreflex function in optimal, normal, and high-normal blood pressure states. J Hypertens. 2015;33:1411–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Julius S, Feldstein CA. Prehypertension: definitions, clinical significance and therapeutic approaches—to treat or not to treat? In: Berbari E, Mancia G, editors. Special issue on hypertension: Springer-Verlag; 2012. p. 3–12.Google Scholar
  20. 20.
    Smith PA, Graham LN, Mackintosh AF, Stoker JB, Mary DA. Sympathetic neural mechanisms in white-coat hypertension. J Am Coll Cardiol. 2002;40:126–33.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grassi G, Seravalle G, Trevano FQ, Dell’Oro R, Bolla GB, Cuspidi C, et al. Neurogenic abnormalities in masked hypertension. Hypertension. 2007;50:537–42.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fagard RH, Stolarz K, Kuznestova T, Seidlerova J, Tikhonoff V, Grodzicki T, et al. Sympathetic activity assessed by power spectral analysis of heart rate variability in white-coat, masked and sustained hypertension versus true normotension. J Hypertens. 2007;25:2280–5.CrossRefPubMedGoogle Scholar
  23. 23.
    Pal GK, Adithan C, Dutta TK, Amudharaj D, Pravati P, Nandan PG, et al. Assessment of sympathovagal imbalance by spectral analysis of heart rate variability in prehypertensive and hypertensive patients in Indian population. Clin Exp Hypertens. 2011;33:478–83.CrossRefPubMedGoogle Scholar
  24. 24.
    Grassi G, Esler M. How to assess sympathetic activity in humnans. J Hypertens. 1999;17:719–34.CrossRefPubMedGoogle Scholar
  25. 25.
    Grassi G, Vailati S, Bertinieri G, Seravalle G, Stella ML, Dell’Oro R, Mancia G. Heart rate as a marker of sympathetic activity. J Hypertens. 1998;16:1635–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Flaa A, Eide IK, Kjeldsen SE, Rostrup M. Sympathoadrenal stress reactivity is a predictor of future blood pressure: an 18-year follow-up study. Hypertension. 2008;52:336–41.CrossRefPubMedGoogle Scholar
  27. 27.
    Wilkinson DJ, Thompson JM, Lambert GW, Jennings GL, Schwarz RG, Jefferys D, Turner AG, Esler MD. Sympathetic activity in patients with panic disorder at rest, under laboratory mental stress, and during panic attacks. Arch Gen Psychiatry. 1998;55:511–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Vasan R, Larson M, Leip E, Kannel W, Levy D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet. 2001;358:1682–6.CrossRefGoogle Scholar
  29. 29.
    Ishikawa Y, Ishikawa J, Ishikawa S, Kayaba K, Nakamura Y, Shimada K, et al. Prevalence and determinants of prehypertension in a Japanese general population: the Jichi Medical School Cohort Study. Hypertens Res. 2008;31:1323–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Tirosh A, Afek A, Rudich A, Percik R, Gordon B, Ayalon N, et al. Progression of normotensive adolescents to hypertensive adults. A study of 26980 teenagers. Hypertension. 2010;56:203–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischemic heart disease. Lancet. 1989;2:577–80.CrossRefPubMedGoogle Scholar
  32. 32.
    Heijzer-veen MG, Finken MJ, Nauta J, Dekker FW, Hille ET, Frolich M, et al. Is blood pressure increased 19 years after intrauterine growth restriction and preterm birth? A prospective follow-up study in the Netherlands. Pediatrics. 2005;116:725–31.CrossRefGoogle Scholar
  33. 33.
    Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfranchi A, Colombo M, Giannattasio C, Brunani A, Cavagnini F, Mancia G. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25:560–3.CrossRefPubMedGoogle Scholar
  34. 34.
    Lund-Johansen P. Hemodynamic in early essential hypertension. Acta Med Scand. 1967;482:1–105.Google Scholar
  35. 35.
    Frolich ED, Kozul VJ, Tarazi RC, Dustan HP. Physiological comparison of labile and essential hypertension. Circ Res. 1970;26:55–69.Google Scholar
  36. 36.
    Julius S, Pascual A, Sannerstedt R, Mitchell C. Relationship between cardiac output and peripheral resistance in borderline hypertension. Circulation. 1971;43:382–90.CrossRefPubMedGoogle Scholar
  37. 37.
    Takeshita A, Tanaka S, Kuroiwa A, Nakamura M. Reduced baroreceptor sensitivity in borderline hepertension. Circulation. 1975;51:738–42.CrossRefPubMedGoogle Scholar
  38. 38.
    Eckberg DL. Carotid baroreflex function in young men with borderline blood pressure elevation. Circulation. 1979;59:632–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Levy RL, White PD, Stroud WD, Hillman CC. Transient tachycardia: prognostic significance alone and in association with transient hypertension. JAMA. 1945;129:585–8.CrossRefGoogle Scholar
  40. 40.
    Trimarco B, Volpe M, Ricciardelli B, et al. Studies of the mechanisms underlying impairment of beta-adrenoceptor-mediated effects in human hypertension. Hypertension. 1983;5:584–90.CrossRefPubMedGoogle Scholar
  41. 41.
    Julius S, Randall OS, Esler MD, Kashima T, Ellis CN, Bennett J. Altered cardiac responsiveness and regulation in the normal cardiac output type of borderline hypertension. Circ Res. 1975;36–37(Suppl. I):I-199–207.CrossRefGoogle Scholar
  42. 42.
    Folkow B. Physiological aspects of primary hypertension. Physiol Rev. 1982;62:347–503.CrossRefPubMedGoogle Scholar
  43. 43.
    Mulvany MJ, Hansen PK, Aalkjaer C. Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layer. Circ Res. 1978;43:854–64.CrossRefPubMedGoogle Scholar
  44. 44.
    Schiffrin EL. Remodeling of resistance arteries in essential hypertension and effects of antihypertensive treatment. Am J Hypertens. 2004;17:1192–200.CrossRefPubMedGoogle Scholar
  45. 45.
    Izzard AS, Rizzoni D, Agabiti Rosei E, Heagerty AM. Small artery structure and hypertension: adaptative changes and target organ damage. J Hypertens. 2005;23:247–50.CrossRefPubMedGoogle Scholar
  46. 46.
    Grassi G, Buzzi S, Dell’Oro R, Mineo C, Dimitriadis K, Seravalle G, Lonati L, Cuspidi C. Structural alterations of the retinal microcirculation in the “prehypertensive” high-normal blood pressure state. Curr Pharmaceutical Des. 2013;19:2375–81.CrossRefGoogle Scholar
  47. 47.
    Psaty BM, Arnold AM, Olson J, et al. Association between levels of blood pressure and measures of subclinical disease multiethnic study of atherosclerosis. Am J Hypertens. 2006;19:1110–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Haffner SM, Miettinen H, Gaskill SP, Stern MP. Metabolic precursors of hypertension. The San Antonio Heart Study. Arch Intern Med. 1996;156:1994–2001.CrossRefPubMedGoogle Scholar
  49. 49.
    Bo S, Gambino R, Gentile L, et al. High-normal blood pressure is associated with a cluster of cardiovascular and metabolic risk factors: a population-based study. J Hypertens. 2009;27:102–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Mancia G, Luscher TF, Shepherd JT, Noll G, Grassi G. Cardiovascular regulation: basic considerations. In: Willerson JT, Cohn JN, Wellens HJJ, Holmes Jr DR, editors. Cardiovascular medicine. London: Springer-Verlag; 2007. p. 1525–36.CrossRefGoogle Scholar
  51. 51.
    O’Rourke MF. Vascular impedance in studies of arterial and cardiac function. Physiol Rev. 1982;62:570–623.CrossRefPubMedGoogle Scholar
  52. 52.
    Jennings JR, Zanstra Y. Is the brain the essential in hypertension? Neuroimage. 2009;47(3):914–21.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jennings JR, Heim AF. From brain to behavior: hypertension’s modulation of cognition and affect. Int J Hypertens. 2012;2012:701385.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Gianaros PJ, Jennings JR, Sheu LK, Derbyshire SW, Matthews KA. Heightened functional neural activation to psychological stress covaries with exaggerated blood pressure reactivity. Hypertension. 2007;49(1):134–40.CrossRefPubMedGoogle Scholar
  55. 55.
    Gianaros PJ, Sheu LK, Remo AM, Christie IC, Crtichley HD, Wang J. Heightened resting neural activity predicts exaggerated stressor-evoked blood pressure reactivity. Hypertension. 2009;53(5):819–25.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ryan JP, Sheu LK, Gianaros PJ. Resting state functional connectivity within the cingulate cortex jointly predicts agreeableness and stressor-evoked cardiovascular reactivity. Neuroimage. 2011;55(1):363–70.CrossRefPubMedGoogle Scholar
  57. 57.
    Naumczyk P, Sabisz A, Witkowska M, Graff B, Jodzio K, Gasecki D, et al. Compensatory functional reorganization may precede hypertension-related brain damage and cognitive decline: a functional magnetic resonance imaging study. J Hypertens. 2017;35(6):1252–62.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Gino Seravalle
    • 1
  • Dagmara Hering
    • 2
  • Guido Grassi
    • 3
    • 4
  • Krzysztof Narkiewicz
    • 2
    Email author
  1. 1.Cardiology DepartmentIstituto Auxologico Italiano IRCCS Ospedale San LucaMilanoItaly
  2. 2.Department of Hypertension and DiabetologyMedical University of GdanskGdanskPoland
  3. 3.Clinica Medica, Department of Medicine and SurgeryUniversity Milano-BicoccaMilanItaly
  4. 4.IRCCS MultimedicaMilanItaly

Personalised recommendations