Skip to main content

Obesity-Hypertension Physiopathology and Treatment: A Forty-Year Retrospect

  • Chapter
  • First Online:
  • 714 Accesses

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

Abstract

During the past 40 years of research into obesity, hypertension, and chronic kidney disease, we have gained considerable knowledge on the effects of excess weight gain to alter numerous metabolic and hormonal processes, which can ultimately result in type 2 diabetes, hypertension, cardiovascular disease, and chronic kidney failure. Over this span of time, we have witnessed the naming of these metabolic and hormonal alterations as a new condition, the Metabolic Syndrome. Additionally, we have noted that hypertension in obesity appears to have some unique differences to essential hypertension in the normal weight population, and have preferred the term Obesity-Hypertension in our description of this process. The obesity epidemic worldwide has continued to surge unabated resulting in the search for new ways to reduce body weight by dietary means, pharmaceutical means, and surgical intervention. This review will focus on an overview of this condition from insights gained over the preceding 40 plus years of research and clinical experience in this field, with an emphasis on Obesity-Hypertension and therapeutic options.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. World Health Organization. Obesity: preventing and managing the global epidemic. In: World Health Organization; 2000.

    Google Scholar 

  2. Centers for Disease Control and Prevention. Defining overweight and obesity. https://www.cdc.gov/obesity/adult/defining.html.

  3. Sturm R. Increases in morbid obesity in the USA: 2000–2005. Public Health. 2007;121(7):492–6.

    Article  CAS  PubMed  Google Scholar 

  4. Kyle UG, Schutz Y, Dupertuis YM, Pichard C. Body composition interpretation: contributions of the fat-free mass index and the body fat mass index. Nutrition. 2003;19(7–8):597–604.

    Article  PubMed  Google Scholar 

  5. Garrow JS, Webster J. Quetelet’s Index (W/H2) as a measure of fatness. Int J Obes (Lond). 1985;9(2):147–53.

    CAS  Google Scholar 

  6. Owen J, Reisin E. Non-communicable disease: a welcome and long needed addition to the WHO’s 2012 World Health Statistics. Curr Hypertens Rep. 2012;14(6):475–7.

    Article  PubMed  Google Scholar 

  7. World Health Organizataion. World Health Statistics 2012. http://www.who.int/gho/publications/world_health_statistics/EN_WHS2012_Full.pdf.

  8. Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197–209.

    Article  PubMed  Google Scholar 

  9. Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts RH. Weight and blood pressure: findings in hypertension screening of 1 million Americans. JAMA. 1978;240(15):1607–10.

    Article  CAS  PubMed  Google Scholar 

  10. Krauss RM, Winston M, Fletcher BJ, Grundy SM. Obesity: impact on cardiovascular disease. Circulation. 1998;98(14):1472–6.

    Article  PubMed  Google Scholar 

  11. Vague J. La differenciation sexuelle; facteur determinant des formes de l’obesite. La Presse Medicale. 1947;55(30):339.

    CAS  PubMed  Google Scholar 

  12. Kannel WB, Brand N, Skinner JJ Jr, Dawber TR, McNamara PM. The relation of adiposity to blood pressure and the development of hypertension: the Framingham study. Ann Intern Med. 1967;67(1):48–59.

    Article  CAS  PubMed  Google Scholar 

  13. Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Kotani K, Tokunaga K. Pathophysiology and pathogenesis of visceral fat obesity. Obes Res. 1995;3(Suppl 2):S187–94.

    Article  Google Scholar 

  14. Hayashi T, Boyko EJ, Leonetti DL, McNeely MJ, Newell-Morris L, Kahn SE, Fujimoto WY. Visceral adiposity is an independent predictor of hypertension in Japanese Americans. Ann Intern Med. 2004;140(12):992–1000.

    Article  PubMed  Google Scholar 

  15. Peiris AN, Sothmann MS, Hoffmann RG, Hennes MI, Wilson CR, Gustafson AB, Kissebah AH. Adiposity, fat distribution, and cardiovascular risk. Ann Intern Med. 1989;110(11):867–72.

    Article  CAS  PubMed  Google Scholar 

  16. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.

    Article  PubMed  Google Scholar 

  17. de Simone G, Devereux RB, Roman MJ, Alderman MH, Laragh JH. Relation of obesity and gender to left ventricular hypertrophy in normotensive and hypertensive adults. Hypertension. 1994;23(5):600–6.

    Article  PubMed  Google Scholar 

  18. Griffen KA. Hypertensive kidney injury and the progression of chronic kidney disease. Hypertension. 2017;70:687–94.

    Article  CAS  Google Scholar 

  19. Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59(4):1498–509.

    Article  CAS  PubMed  Google Scholar 

  20. Good D, Morse SA, Ventura HO, Reisin E. Obesity, hypertension, and the heart. J Cardiometab Syndr. 2008;3:168–72.

    Article  PubMed  Google Scholar 

  21. Morse S, Zhang R, Thakur V, Reisin E. Hypertension and the metabolic syndrome. Am J Med Sci. 2005;330(6):303–10.

    Article  PubMed  Google Scholar 

  22. Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41:625–33.

    Article  CAS  PubMed  Google Scholar 

  23. Hall JE, Brands MW, Dixon WN, Smith MJ. Obesity induced hypertension: renal function and systemic hemodynamics. Hypertension. 1993;22(3):292–9.

    Article  CAS  PubMed  Google Scholar 

  24. Thakur V, Morse S and Reisin E. “Functional and structural renal changes in the early stages of obesity” Wolf G 9ed Obesity and the Kidney Contrib. Nephrol. Basel, Karger; 2006, vol 151, pp 135-150.

    Google Scholar 

  25. Kotchen T. Obesity-related hypertension: epidemiology, pathophysiology, and clinical management. Am J Hypertens. 2010;23(11):1170–8.

    Article  CAS  PubMed  Google Scholar 

  26. Segal-Lieberman G, Rosenthal T. Animal models in obesity and hypertension. Curr Hypertens Rep. 2013;15:190–5.

    Article  CAS  PubMed  Google Scholar 

  27. DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10:364–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singer GM, Setaro JF. Secondary hypertension—obesity and the metabolic syndrome. J Clin Hypertens. 2008;10(7):567–74.

    Article  CAS  Google Scholar 

  29. Rahmouni K, Correia MLG, Haynes WG, Mark AL. Obesity-associated hypertension: new insights into mechanisms. Hypertension. 2005;45:9–14.

    Article  CAS  PubMed  Google Scholar 

  30. Guyton AC, Coleman TG, Cowley AV Jr, Scheel KW, Manning RD Jr, Norman RA Jr. Arterial pressure regulation: overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52(5):584–94.

    Article  CAS  PubMed  Google Scholar 

  31. Reisin E, Messerli FG, Ventura HO, Frohich ED. Renal haemodynamic studies in obesity hypertension. J Hypertens. 1987;5:397–400.

    CAS  PubMed  Google Scholar 

  32. Reisin E, Suarez DH, Frolich ED. Haemodynamic changes associated with obesity and high blood pressure in rats with ventromedial hypothalamic lesions. Clin Sci. 1980;59:397s–9s.

    Article  Google Scholar 

  33. Carroll JF, Huang M, Hester RL, Cockrell KH, Mizelle L. Hemodynamic alterations in hypertensive obese rabbits. Hypertension. 1995;26:465–70.

    Article  CAS  PubMed  Google Scholar 

  34. Owen JG, Reisin E. Anti-hypertensive drug treatment of patients with the metabolic syndrome and obesity: a review of evidence, meta-analysis, post hoc and guidelines publications. Curr Hypertens Rep. 2015;17:46.

    Article  CAS  Google Scholar 

  35. Marcus Y, Shefer G, Stern N. Adipose tissue renin-angiotensin-aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol. 2013;378:1–14.

    Article  CAS  PubMed  Google Scholar 

  36. Grassi G. Sympathetic overdrive and cardiovascular risk in the metabolic syndrome. Hypertens Res. 2006;29:839–47.

    Article  CAS  PubMed  Google Scholar 

  37. Trossi RJ, Weiss ST, Parker DR, Sparrow D, Young JB, Landsberg L. Relation of obesity and diet to sympathetic nervous system activity. Hypertension. 1991;17:669–77.

    Article  Google Scholar 

  38. Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfanchi A, Colombo M, Giannattasio C, Brunani A, Cavagnini F, Mancia G. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25:560–3.

    Article  CAS  PubMed  Google Scholar 

  39. DiBona GF. Sympathetic nervous system and hypertension. Hypertension. 2013;61:556–60.

    Article  CAS  PubMed  Google Scholar 

  40. Kalil GZ, Haynes WG. Sympathetic nervous system in obesity-related hypertension—mechanisms and clinical implications. Hypertens Res. 2012;35(1):4–16.

    Article  CAS  PubMed  Google Scholar 

  41. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Investig. 1991;87:2246–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Anderson EA, Balon TW, Hoffman RP, Sinkey CA, Mark AL. Insulin increases sympathetic activity but not blood pressure in borderline hypertensive humans. Hypertension. 1992;19(6):621–67.

    Article  CAS  PubMed  Google Scholar 

  43. Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities—the role of insulin resistance and the sympathoadrenal system. N Engl J Med. 1996;334(6):374–81.

    Article  CAS  PubMed  Google Scholar 

  44. Kazumi T, Kawaquchi A, Katoh J, Iwahashi M, Yoshino G. Fasting insulin and leptin serum levels are associated with systolic blood pressure independent of percentage body fat and body mass index. J Hypertens. 1999;17(10):1451–5.

    Article  CAS  PubMed  Google Scholar 

  45. Park SE, Rhee EJ, Park CY, Oh KY, Park SW, Kim SW, Lee WY. Impact of hyperinsulinemia in the development of normotensive, nondiabetic adults: a 4 year follow up study. Metabolism. 2013;62(4):532–8.

    Article  CAS  PubMed  Google Scholar 

  46. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, Mckee LJ, Bauer TL, Caro JF. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5.

    Article  CAS  PubMed  Google Scholar 

  47. Bravo PE, Morse S, Borne DM, Aguilar EA, Reisin E. Leptin and hypertension in obesity. Vasc Health Risk Manag. 2006;2(2):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS. Role of leptin in fat regulation. Nature. 1996;380(6576):677.

    Article  CAS  PubMed  Google Scholar 

  49. da Silva AA, do Carmo JM, Wang Z, Hall JE. The brain melanocortin system, sympathetic control, and obesity hypertension. Physiology. 2014;29:196–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, Smith G, Stec DE. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 2010;285(23):17,271–6.

    Article  CAS  Google Scholar 

  51. Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P, Wanger AJ, DePaoli AM Reitman ML, Taylor SI, Gorden P, Garg A. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346(8):570–80.

    Article  CAS  PubMed  Google Scholar 

  52. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O’Rahily S. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Investig. 2002;110(8):1093–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Paz-Filho G, Mastronardi CA, Licinio J. Leptin treatment: facts and expectations. Metabolism. 2015;64(1):146–56.

    Article  CAS  PubMed  Google Scholar 

  54. Vatier C, Fetita S, Boudou P, Tchankou C, Deville L, Riveline J, Young J, Mathivon L, Travert F, Morin D, Cahen J, Lascols O, Andreeli F, Reznik Y, Mongeois E, Madeline I, Vantyghem M, Gautier J, Vigouroux C. One-year metreleptin improves insulin secretion in patients with diabetes linked to genetic lipodystrophic syndromes. Diabetes Obes Metab. 2016;18(7):693–7.

    Article  CAS  PubMed  Google Scholar 

  55. Belin de Chanteme’le EJ, Mintz JD, Rainey WE, Stepp DW. Impact of leptin-mediated sympatho-activation on cardiovascular function in obese mice. Hypertension. 2011;58:271–9.

    Article  CAS  Google Scholar 

  56. da Silva AA, Kuo JJ, Hall JE. Role of hypothalamic melanocortin ¾-receptors in mediating chronic cardiovascular, renal, and metabolic actions of leptin. Hypertension. 2004;43(6):1312–7.

    Article  CAS  PubMed  Google Scholar 

  57. Tallam LS, da Silva AA, Hall JE. Melanocortin-4 receptor mediates chronic cardiovascular and metabolic actions of leptin. Hypertension. 2006;48(1):58–64.

    Article  CAS  PubMed  Google Scholar 

  58. do Carmo JM, da Silva AA, Cai Z, Lin S, Dubinion JH, Hall JE. Control of blood pressure, appetite, and glucose in mice lacking leptin receptors in proopiomelanocortin neurons. Hypertension. 2011;57(5):918–26.

    Article  CAS  PubMed  Google Scholar 

  59. Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension. 1998;31:409–14.

    Article  CAS  PubMed  Google Scholar 

  60. Aizawa-Abe M, Ogawa Y, Masuzaki H, Ebihara K, Satoh N, Iwai H, Matsuoka N, Hayashi T, Hosoda K, Inoue G, Yoshimasa Y, Nakao K. Pathophysiological role of leptin in obesity-related hypertension. J Clin Investig. 2000;105:1243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96:1897–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Calhoun DA. Obstructive sleep apnea and hypertension. Curr Hypertens Rep. 2010;12:189–95.

    Article  PubMed  Google Scholar 

  63. Borgel J, Sanner BM, Keskin F, Bittlinsky A, Bartels NK, Buchner N, Huesing A, Rump LC, Mugge A. Obstructive sleep apnea and blood pressure: Interaction between the blood pressure-lowering effects of positive airway pressure therapy and antihypertensive drugs. Am J Hypertens. 2004;17:1081–7.

    Article  PubMed  Google Scholar 

  64. Dudenbostel T, Calhoun DA. Resistant hypertension, obstructive sleep apnoea, and aldosterone. J Hum Hypertens. 2012;26(5):281–7.

    Article  CAS  PubMed  Google Scholar 

  65. Abdel-Kader K, Dohar S, Shah N, Jhamb M, Reis SE, Strollo P, Buysse D, Unruh ML. Resistant hypertension and obstructive sleep apnea in the setting of kidney disease. J Hypertens. 2012;30(5):960–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Owen J, Reisin E. Obstructive sleep apnea and hypertension: is the primary link simply volume overload. Curr Hypertens Rep. 2013;15:131–3.

    Article  PubMed  Google Scholar 

  67. Karlsson C, Lindell K, Ottosson M, Sjostrom L, Carlsson B, Carlsson LM. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J Clin Endocrinol Metabol. 1998;83(11):3925–9.

    CAS  Google Scholar 

  68. Engeli S, Gorzelniak K, Kreutz R, Runkel N, Distler A, Sharma AM. Co-expression of renin-angiotensin system genes in human adipose tissue. J Hypertens. 1999;17(4):555–60.

    Article  CAS  PubMed  Google Scholar 

  69. Achard V, Boullu-Ciocca S, Desbriere R, Nguyen G, Grino M. Renin receptor expression in human adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R274–82.

    Article  CAS  PubMed  Google Scholar 

  70. Kouyama R, Suganami T, Nishida J, Tanaka M, Toyoda T, Kiso M, Chiwata T, Miyamoto Y, Yoshimasa Y, Fukamizu A, Horiuchi M, Hirata Y, Ogawa Y. Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin II type 1a receptor. Endocrinology. 2005;146(8):3481–9.

    Article  CAS  PubMed  Google Scholar 

  71. Yvan-Charvet L, Even P, Bloch-Faure M, Guerre-Millo M, Moustaid-Moussa N, Ferre P, Quignard-Boulange A. Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance. Diabetes. 2005;54:991–9.

    Article  CAS  PubMed  Google Scholar 

  72. Massiera F, Seydoux J, Geloen A, Quignard-Boulange A, Turban S, Saint-Marc P, Fukamizu A, Negrel R, Ailhaud G, Teboul M. Angiotensinogen-deficient mice exhibit impairment of diet-induced weight gain with alteration in adipose tissue development and increased locomotor activity. Endocrinology. 2001;142(12):5220–5.

    Article  CAS  PubMed  Google Scholar 

  73. Massiera F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, Quignard-Boulange A, Negrel R, Ailhaud G, Seydoux J, Meneton P, Teboul M. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J. 2001;15(14):2727–9.

    Article  CAS  PubMed  Google Scholar 

  74. Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, Daugherty A, Cassis LA. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension. 2012;60:1524–30.

    Article  CAS  PubMed  Google Scholar 

  75. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I. Adipose tissue hypoxia and its impact on adipocytokine dysregulation. Diabetes. 2007;56:901–11.

    Article  CAS  PubMed  Google Scholar 

  76. Wree A, Mayer A, Westphal S, Beilfuss A, Canbay A, Schick RR, Gerken G, Vaupel P. Adipokine expression in brown and white adipocytes in response to hypoxia. J Endocrinol Invest. 2012;35(5):522–7.

    CAS  PubMed  Google Scholar 

  77. Yasue S, Masuzaki H, Okada S, Ishii T, Kozuka C, Tanaka T, Fujikura J, Ebihara K, Hosoda K, Katsurada A, Ohashi N, Urushihara M, Kobori H, Morimoto N, Kawazoe T, Naitoh M, Okada M, Sakaue H, Suzuki S, Nakao K. Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: impact of nutritional status and adipocyte hypertrophy. Am J Hypertens. 2010;23(4):425–31.

    Article  CAS  PubMed  Google Scholar 

  78. Yvan-Charvet L, Quignard-Boulange A. Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int. 2011;79:162–8.

    Article  CAS  PubMed  Google Scholar 

  79. Van Harmelen V, Ariapart P, Hoffstedt J, Lundkvist I, Bringman S, Arner P. Increased adipose angiotensinogen gene expression in human obesity. Obes Res. 2000;8(4):337–41.

    Article  PubMed  Google Scholar 

  80. Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011;58:784–90.

    Article  CAS  PubMed  Google Scholar 

  81. Chandra A, Neeland IJ, Berry JD, Ayers CR, Rohatgi A, Das SR, Khera A, McGuire DK, de Lemos JA, Turer AT. The relationship of body mass and fat distribution with incident hypertension: observations from the Dallas Heart Study. J Am Coll Cardiol. 2014;64:997–1002.

    Article  PubMed  Google Scholar 

  82. Briones AM, Nguyen Dinh Cat A, Callera GE, Yogi A, Burger D, He Y, Correa JW, Gagnon AM, Gomez-Sanchez CE, Gomez-Sanchez EP, Sorisky A, Ooi TC, Ruzicka M, Burns KD, Touyz RM. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012;59:1069–78.

    Article  CAS  PubMed  Google Scholar 

  83. Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, Luft FC, Sharma AM. Weight loss and the renin-angiotensin-aldosterone system. Hypertension. 2005;45(3):356–62.

    Article  CAS  PubMed  Google Scholar 

  84. Dubenostel T, Ghazi L, Liu M, Li P, Oparil S, Calhoun DA. Body mass index predicts 24-hour urinary aldosterone levels in patients with resistant hypertension. Hypertension. 2015;68(4):995–1003.

    Google Scholar 

  85. Laffin LJ, Majewski C, Liao C, Bakris G. Relationship between obesity, hypertension, and aldosterone production in postmenopausal Africa American Women: a pilot study. J Clin Hypertens. 2016;18(12):1216–21.

    Article  CAS  Google Scholar 

  86. Goodfriend TL, Egan BM, Kelley DE. Aldosterone in obesity. Endocr Res. 1998;24(3):789–96.

    Article  CAS  PubMed  Google Scholar 

  87. Rossi GP, Belfiore A, Bernini G, Fabris B, Caridi G, Ferri C, Giacchetti G, Letizia C, Maccario M, Mannelli M, Palumbo G, Patalano A, Rizzoni D, Rossi E, Pessina AC, Mantero F, Primary Aldosteronism Prevalence in Hypertension Study Investigators. Body mass index predicts plasma aldosterone concentrations in overweight-obese primary hypertensive patients. J Clin Endocrinol Metabol. 2008;93(7):2566–71.

    Article  CAS  Google Scholar 

  88. Brown NJ. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 2013;9(8):459–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollaq WB, Filosa JA, Belin de Chanemele EJ. Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation. 2015;132(22):2134–45.

    Article  CAS  PubMed  Google Scholar 

  90. Buglioni A, Cannone V, Sangaralingham SJ, Heublein DM, Scott CG, Bailey KR, Rodeheffer RJ, Sarzani R, Burnett JC. Aldosterone predicts cardiovascular, renal and metabolic disease in the general community: a 4-year follow up. J Am Heart Assoc. 2015;4(12):pii: e002505.

    Article  Google Scholar 

  91. de Souza F, Muxfeldt E, Fiszman R, Salles G. Efficacy of spironolactone therapy in patients with true resistant hypertension. Hypertension. 2010;55:147–52.

    Article  CAS  PubMed  Google Scholar 

  92. Henegar JR, Zhang Y, De Rama R, Hata C, Hall ME, Hall JE. Catheter based radiofrequency renal denervation lowers blood pressure in obese hypertensive dogs. Am J Hypertens. 2014;27(10):1285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Coehn SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL, Symplicity HTN-3 Investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    Article  CAS  PubMed  Google Scholar 

  94. Coppolino G, Pisano A, Rivoli L, Bolignano D. Renal denervation for resistant hypertension. Cochrane Database Syst Rev. 2017;2:CD011499.

    PubMed  Google Scholar 

  95. Wofford MR, Anerson DC Jr, Brown CA, Jones DW, Miller ME, Hall JE. Antihypertensive effect of alpha- and beta- adrenergic blockade in obese and lean hypertensive subjects. Am J Hypertens. 2001;14(7):694–8.

    Article  CAS  PubMed  Google Scholar 

  96. Lilleness BM, Frishman WH. Ghrelin and the cardiovascular system. Cardiol Rev. 2016;24:288–97.

    Article  PubMed  Google Scholar 

  97. Lambert E, Lamber G, Ika-Sari C, Dawood T, Lee K, Chopra R, Straznicky N, Eikelis N, Drew S, Tilbrook A, Dixon J, Esler M, Schlaich MP. Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men. Hypertension. 2011;58(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  98. Tschop M, Weyer C, Tataranni PA, Devanarayan V, Rayussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50:707–9.

    Article  CAS  PubMed  Google Scholar 

  99. Wang Y, Liu J. Plasma ghrelin modulation in gastric band operation and sleeve gastrectomy. Obes Surg. 2009;19:357–62.

    Article  PubMed  Google Scholar 

  100. Hady HR, Golaszewski P, Zbucki RL, Dadan J. The influence of laparoscopic adjustable gastric banding and laparoscopic sleeve gastrectomy on weight loss, plasma ghrelin, insulin, glucose and lipis. Folia Histochem Cytobiol. 2012;50:292–303.

    Article  CAS  PubMed  Google Scholar 

  101. Sista F, Abruzzese V, Clementi M, Carandina S, Amicucci G. Effect of resected gastric volume of ghrelin and GLP-1 plasma levels: a prospective study. J Gastrointest Surg. 2016;20:1931–41.

    Article  PubMed  Google Scholar 

  102. Owen JG, Yazdi F, Reisin E. Bariatric surgery and hypertension. Am J Hypertens. 2017;31:11–7. Epub ahead of print. https://doi.org/10.1093/ajh/hpx112.

    Article  PubMed  Google Scholar 

  103. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2137–57.

    Article  CAS  Google Scholar 

  104. Wang B, Zhong J, Lin H, Zhao Z, Yan Z, He H, Ni Y, Liu D, Zhu Z. Blood pressure- lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes Metab. 2013;15(8):737–49.

    Article  CAS  PubMed  Google Scholar 

  105. Goud A, Zhong J, Peters M, Brook RD, Rajagopalan S. GLP-1 agonists and blood pressure: a review of the evidence. Curr Hypertens Rep. 2016;18(2):16.

    Article  CAS  PubMed  Google Scholar 

  106. Okerson T, Yan P, Stonehouse A, Brodows R. Effects of exenatide on systolic blood pressure in subjects with type 2 diabetes. Am J Hypertens. 2010;23(3):334–9.

    Article  CAS  PubMed  Google Scholar 

  107. Robinson LE, Holt TA, Rees K, Randeva HS, O’Hare JP. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systematic review and meta-analysis. BMJ Open. 2013;3(1):e001986.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Krisai P, Aeschbacher S, Schoen T, Bossard M, van der Stouwe JG, Dorig L, Todd J, Estis J, Risch M, Risch L, Conen D. Glucgon-like peptide-1 and blood pressure in young and healthy adults from the general population. Hypertension. 2015;65:306–12.

    Article  CAS  PubMed  Google Scholar 

  109. Yamamoto H, Lee CH, Marcus JN, Williams TD, Overton JM, Lopez ME, Hollenberg AN, Baggio L, Saper CB, Drucker DJ, Elmquist JK. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Investig. 2002;110(1):43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barragan JM, Rodriguez RE, Blazquez E. Changes in arterial blood pressure and heart rate induced by glucagon-like peptide-1-(7-36) amide in rats. Am J Physiol. 1994;266(3):459–66.

    Google Scholar 

  111. Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, Simpson JA, Drucker DJ. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013;19(5):567–75.

    Article  CAS  PubMed  Google Scholar 

  112. Takahashi N, Anan F, Nakagawa M, Yufu K, Shinohara T, Tsubone T, Goto K, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Hara M, Saikawa T, Yoshimatus H. Hypoadiponectinemia in type 2 diabetes mellitus in men is associated with sympathetic overactivity as evaluated by cardiac 123I-metaiodobenzylguanidine scintigraphy. Metabolism. 2007;56(7):919–24.

    Article  CAS  PubMed  Google Scholar 

  113. Vasunta RL, Kesaniemi YA, Ukkola O. Plasma adiponectin concentration is associated with ambulatory daytime systolic blood pressure but not with the dipping status. J Hum Hypertens. 2010;24(8):545–51.

    Article  CAS  PubMed  Google Scholar 

  114. Kim DH, Kim C, Ding EL, Townsend MK, Lipsitz LA. Adiponectin levels and the risk of hypertension: a systematic review and meta-analysis. Hypertension. 2013;62(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  115. Reisin E, Abel R, Modan M, Silverberg DS, Eliahou HE, Modan B. Effect of weight loss without salt restriction on the reduction of blood pressure in overweight hypertensive patients. N Engl J Med. 1978;298(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  116. Dansigner ML, Gleason JA, Giffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA. 2005;293(1):43–5.

    Article  Google Scholar 

  117. Straznicky NE, Lambert EA, Lambert GW, Masu K, Esler MD, Nestel PJ. Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome. J Clin Endocrinol Metabol. 2005;90(11):5998–6005.

    Article  CAS  Google Scholar 

  118. Busetto L, Sergi G, Enzi G, Segato G, De Marchi F, Foletto M, De Luca M, Pigozzo S, Favretti F. Short-term effects of weight loss on the cardiovascular risk factors in morbidly obese patients. Obes Res. 2004;12(8):1256–63.

    Article  PubMed  Google Scholar 

  119. McTigue KM, Harris R, Hemphill B, Lux L, Sutton S, Bunton AJ, Lohr KN. Screening and interventions for obesity in adults: summary of the evidence for the U.S. Preventative Services Task Force. Ann Intern Med. 2003;139(11):933–49.

    Article  PubMed  Google Scholar 

  120. Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. JAMA. 2003;289(14):1799–804.

    Article  CAS  PubMed  Google Scholar 

  121. Miller ER 3rd, Erlinger TP, Young DR, Jehn M, Charleston J, Rhodes D, Wasan SK, Appel LJ. Results of the diet, exercise and weight loss intervention trial (DEW-It). Hypertension. 2002;40(5):612–8.

    Article  CAS  PubMed  Google Scholar 

  122. Dalle Grave R, Melchionda N, Calugi S, Centis E, Tufano A, Fatati G, Fusco MA, Marchesini G. Countinues care in the treatment of obesity: an observational multicenter study. J Intern Med. 2005;258(3):265–73.

    Article  CAS  PubMed  Google Scholar 

  123. Sundstrom J, Bruze G, Ottosson J, Marcus C, Naslund I, Neovius M. Weight loss and heart failure: a nationwide study of gastric bypass surgery versus intensive lifestyle treatment. Circulation. 2017;135(17):1577–85.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Motesi L, El Goch M, Brodosi L, Calugi S, Marchesini G, Dalle Grave R. Long-term weight loss maintenance for obesity: a multidisciplinary approach. Diabetes Metab Syndr Obes. 2017;9:37–46.

    Google Scholar 

  125. Bloch AS. Low carbohydrate diets, pro: time to rethink our current strategies. Nutr Clin Pract. 2005;20(1):3–12.

    Article  PubMed  Google Scholar 

  126. Verheggen RJHM, Maessen MFH, Green DJ, Hermus ARMM, Hopman MTE, Thijssen DHT. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obes Rev. 2016;17(8):664–90.

    Article  CAS  PubMed  Google Scholar 

  127. Ismail I, Keating SE, Baker MK, Johnson NA. A systematic review and meta-analysis of the effect of aerobic vs. resistance exercise training on visceral fat. Obes Rev. 2011;13:68–91.

    Article  PubMed  Google Scholar 

  128. Goodpaster BH, Delany JP, Otto AD, Kuller L, Vockley J, South-Paul JE, Thomas SB, Brown J, McTigue K, Hames KC, Lang W, Jakicic JM. Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA. 2010;304(16):1795–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Slentz CA, Bateman LA, Willis LH, Granville EO, Pinner LW, Samsa GP, Setji TL, Muehlbauer MJ, Huffman KM, Bales CW, Kraus WE. Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomized controlled trial. Diabetologia. 2016;59:2088–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42:878–84.

    Article  CAS  PubMed  Google Scholar 

  131. Staessen J, Fagard R, Amery A. The relationship between body weight and blood pressure. J Hum Hypertens. 1988;2(4):207–17.

    CAS  PubMed  Google Scholar 

  132. Aucott L, Poobalan A, Smith WCS, Avenell A, Jung R, Broom J. Effects of weight loss in overweight/obese individuals and long-term hypertension outcomes: a systematic review. Hypertension. 2005;45:1035–41.

    Article  CAS  PubMed  Google Scholar 

  133. Aucott L, Rothnie H, McIntyre L, Thapa M, Waweru C, Gray D. Long-term weight loss from lifestyle intervention benefits blood pressure: a systemtatic review. Hypertension. 2009;54:756–62.

    Article  CAS  PubMed  Google Scholar 

  134. Semlitsch T, Jeitler K, Berghold A, Horvath K, Posch N, Poggenburg S, Siebenhofer A. Long-term effects of weight-reducing diets in people with hypertension. Cochrane Database Syst Rev. 2016;3:CD008274.

    PubMed  Google Scholar 

  135. Appel LJ, Moore TJ, Obarzanek E, Vollmer WM, Svetkey LP, Sacks FM, Bray GA, Vogt TM, Cutler JA, Windhauser MM, Lin PH, Karanja N, For the DASH Collaborative Research Group. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336(16):1117–24.

    Article  CAS  PubMed  Google Scholar 

  136. Lin PH, Allen JD, Li YJ, Yu M, Lien L, Svetky LP. Blood pressure-lowering mechanisms of the DASH dietary pattern. J Nutr Metab. 2012;2012:472396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. McGregor RA, Poppitt SD. Milk protein for improved metabolic health: a review of the evidence. Nutr Metab. 2013;10:46.

    Article  CAS  Google Scholar 

  138. Blumenthal JA, Babyak MA, Hinderliter A, Watkins LL, Craighead L, Lin PH, Caccia C, Johnson J, Waugh R, Sherwood A. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women: the ENCORE study. Arch Intern Med. 2010;170(2):126–35.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Blumenthal JA, Babyak MA, Sherwood A, Craighead L, Lin PH, Johnson J, Watkins LL, Wang JT, Kuhn C, Feinglos M, Hinderliter A. Effects of the dietary approaches to stop hypertension diet alone and in combination with exercise and caloric restriction on insulin sensitivity and lipids. Hypertension. 2010;55:1199–205.

    Article  CAS  PubMed  Google Scholar 

  140. Shirani F, Salehi-Abargouei A, Azadbakht L. Effects of dietary approaches to stop hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition. 2013;29:939–47.

    Article  PubMed  Google Scholar 

  141. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med. 2003;348(26):2599–608.

    Article  PubMed  Google Scholar 

  142. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, Gomez-Gracia E, Ruiz-Gutierrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pinto X, Basora J, Munoz MA, Soril JV, Martinez JA, Martinez-Gonzalez MA, PREDIMED Study Investigators. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.

    Article  CAS  PubMed  Google Scholar 

  143. Domenech M, Roman P, Lapetra J, de la Corte FJ G, Sala-Vila A, de la Torre R, Corella D, Salas-Salvado J, Ruiz-Gutierrez V, Lamuela-Raventos RM, Toledo E, Estruch R, Coca A, Ros E. Mediterranean diet reduces 24-hour ambulatory blood pressure, blood glucose, and lipids: one-year randomized, clinical trial. Hypertension. 2014;64:69–76.

    Article  CAS  PubMed  Google Scholar 

  144. Toledo E, Hu FB, Estruch R, Buil-Cosiales P, Corella D, Salas-Salvado J, Covas MI, Aros F, Gomez-Gracia E, Fiol M, Lapetra J, Serra-Majem L, Pinto X, Lamuela-Raventos RM, Saez G, Bullo M, Ruiz-Gutierrez V, Ros E, Sorli JV, Martinez-Gonzalez MA. Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: results from a randomized controlled trial. BMC Med. 2013;11:207.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Gay HC, Rao SG, Vaccarino V, Ali MK. Effects of different dietary interventions on blood pressure: systematic review and meta-analysis of randomized controlled trials. Hypertension. 2016;67:733–9.

    Article  CAS  PubMed  Google Scholar 

  146. St Jeor ST, Howard BV, Prewitt TE, Boyee V, Bazzare T, Eckel RH, Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Dietary protein and weight reduction: a statement for healthcare professionals from the Nutrition Committee of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Circulation. 2001;104(15):1869–74.

    Article  CAS  PubMed  Google Scholar 

  147. Friedman AN, Ogden LG, Foster GD, Klein S, Stein R, Miller B, Hill JO, Brill C, Bailer B, Rosenbaum DR, Wyatt HR. Comparative effects of low-carbohydrate high protein versus low-fat diets on the kidney. Clin J Am Soc Nephrol. 2012;7(7):1103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Brinkworth GD, Buckley JD, Noakes M, Clifton PM. Renal function following long-term weight loss in individuals with abdominal obesity on a very-low-carbohydrte diet vs high carbohydrate diet. J Am Diet Assoc. 2010;110(4):633–8.

    Article  PubMed  Google Scholar 

  149. Samaha FF, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams T, Williams M, Gracely EJ, Stern L. A low-carbohydrate as compared with a low-fat diet in severe obesity. N Engl J Med. 2003;348:2074–81.

    Article  CAS  PubMed  Google Scholar 

  150. Foster GD, Wyatt HR, Hill JO, McGuckin BG, Brill C, Mohammed S, Szapary PO, Rader DJ, Edman JS, Klein S. A randomized trial of a low-carbohydrate diet for obesity. N Engl J Med. 2003;348:2082–90.

    Article  CAS  PubMed  Google Scholar 

  151. Stern L, Iqbal N, Seshadri P, Chicano KL, Daily DA, McGrory J, Williams M, Gracely EJ, Samaha FF. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults—one year follow-up of a randomized trial. Ann Intern Med. 2004;140:778–85.

    Article  PubMed  Google Scholar 

  152. Yancy WS Jr, Olsen MK, Guyton JR, Bakst RP, Westman EC. A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia. Ann Intern Med. 2004;140:769–77.

    Article  PubMed  Google Scholar 

  153. Farnsworth E, Luscombe ND, Noakes M, Wittert G, Argyiou E, Clifton PM. Effect of a high-protein, energy-restricted diet on body composition, glycemic control, and lipid concentrations in overweight and obese hyperinsulinemic men and women. Am J Clin Nutr. 2003;78:31–9.

    Article  CAS  PubMed  Google Scholar 

  154. Brehm BJ, Seely RJ, Daniels SR, D’Alessio DA. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab. 2003;88:1617–23.

    Article  CAS  PubMed  Google Scholar 

  155. Engberink MF, Geleijnse JM, Bakker SJL, Larsen TM, Handjieva-Darlesnka T, Kafatos A, Martinez JA, Pfeiffer AFH. Effect of a high-protein diet on maintenance of blood pressure levels achieved after initial weight loss: the DiOGenes randomized study. J Hum Hypertens. 2015;29:58–63.

    Article  CAS  PubMed  Google Scholar 

  156. Appel LJ, Sacks FM, Carey VJ, Obarzanek E, Swain JF, Miller ER 3rd, Conlin PR, Erlinger TP, Rosner BA, Laranio NM, Charleston J, McCarron P, Bihop LM, OmniHeart Collaborative Research Group. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids. JAMA. 2005;294(19):2455–64.

    Article  CAS  PubMed  Google Scholar 

  157. Oyabu C, Hashimoto Y, Fukuda T, Tanaka M, Asano M, Yamazaki M, Fukui M. Impact of low-carbohydrate diet on renal function: a meta-analysis of over 1000 individuals from nine randomized controlled trials. Br J Nutr. 2016;116:632–8.

    Article  CAS  PubMed  Google Scholar 

  158. Siebenhofer A, Jeitler K, Horvath K, Berghold A, Posch N, Meschik J, Semlitsch T. Long-term effects of weight-reducing drugs in people with hypertension. Cochrane Database Syst Rev. 2016;3:CD007654.

    PubMed  Google Scholar 

  159. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    Article  CAS  PubMed  Google Scholar 

  160. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccessi L, Nanni G, Pomp A, Castagneto M, Ghirlanda G, Rubino F. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.

    Article  CAS  PubMed  Google Scholar 

  161. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, Aminian A, Pothier CE, Kim ES, Nissen SE, Kashyap SR, Investigators STAMPEDE. Bariatric surgery versus intensive medical therapy for diabetes—3 year outcomes. N Engl J Med. 2014;370(21):2002–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, Navaneethan SD, Singh RP, Pothier CE, Nissen SE, Kashyap SR, STAMPEDE Investigators. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Sjöström L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, Dahlgren S, Larsson B, Narbro K, Sjöström CD, Sullivan M, Wedel H, Swedish Obese Subjects Study Scientific Group. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351:2683–93.

    Article  PubMed  Google Scholar 

  164. Hallersund P, Sjöström L, Olbers T, Lönroth H, Jacobson P, Wallenius V, Näslund I, Carlsson LM, Fändriks L. Gastric bypass surgery is followed by lowered blood pressure and increased diuresis - long term results from the Swedish Obese Subjects (SOS) study. PLoS One. 2012;7:e49696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sarkhosh K, Birch DW, Shi X, Gill RS, Karmali S. The impact of sleeve gastrectomy on hypertension: a systematic review. Obes Surg. 2012;22:832–7.

    Article  PubMed  Google Scholar 

  166. Ricci C, Gaeta M, Rausa E, Asti E, Bandera F, Bonavina L. Long-term effects of bariatric surgery on type II diabetes, hypertension and hyperlipidemia: a meta-analysis and meta-regression study with 5-year follow-up. Obes Surg. 2015;25:397–405.

    Article  PubMed  Google Scholar 

  167. Wilhelm SM, Young J, Kale-Pradhan PB. Effect of bariatric surgery onhypertension: a meta-analysis. Ann Pharmacother. 2014;48:674–82.

    Article  PubMed  Google Scholar 

  168. Vest AR, Heneghan HM, Agarwal S, Schauer PR, Young JB. Bariatric surgery and cardiovascular outcomes: a systematic review. Heart. 2012;98:1763–77.

    Article  PubMed  Google Scholar 

  169. Heneghan HM, Meron-Eldar S, Brethauer SA, Schauer PR, Young JB. Effect of bariatric surgery on cardiovascular risk profile. Am J Cardiol. 2011;108:1499–507.

    Article  PubMed  Google Scholar 

  170. Courcoulas AP, Christian NJ, Belle SH, Berk PD, Flum DR, Garcia L, Horlick M, Kalarchian MA, King WC, Mitchell JE, Patterson EJ, Pendler JR, Pomp A, Pories WJ, Thirlby RC, Yanovski SZ, Wolfe BM, Longitudinal Assessment of Bariatric Surgery (LABS) Consortium. Weight change and health outcomes at 3 years after bariatric surgery among individuals with severe obesity. JAMA. 2013;310:2416–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, McMahon MM, Heinberg LJ, Kushner R, Adams TD, Shikora S, Dixon JB, Brethauer S. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic and Bariatric Surgery. Obesity. 2013;21(Supplement 1):S1–27.

    Article  CAS  PubMed  Google Scholar 

  172. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ, National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure, National High Blood Pressure Education Program Coordinating Committee. The seventh report of the joint national committee on prevention, detection, evaluation and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.

    Article  CAS  PubMed  Google Scholar 

  173. Amery A, Berthaux P, Bulpitt C, Deruyttere M, de Schaepdryver A, Dollery C, Fagard R, Forette F, Hellemans J, Lund-Johansen P, Mutsers A, Tuomilehto J. Glucose intolerance during diuretic therapy: results of trial by the European working party on hypertension in the elderly. Lancet. 1978;1(8066):681–3.

    Article  CAS  PubMed  Google Scholar 

  174. Plavinik FL, Rodrigues C, Zanella MT, Ribeiro AB. Hypokalemia, glucose intolerance, and hyperinsulinemia during diuretic therapy. Hypertension. 1992;19(2 suppl):26–9.

    Google Scholar 

  175. Harper R, Ennis CN, Heaney AP, Sheridan B, Gormley M, Atkinson AB, Johnston GD, Bell PM. A comparison of the effects of low and conventional dose thiazide diuretic on insulin action in hypertensive patients with NIDDM. Diabetologia. 1995;38(7):853–9.

    Article  CAS  PubMed  Google Scholar 

  176. Punzi HA, Punzi CF. Antihypertensive and lipid-lowering heart attack trial study; trinity hypertension research institute. Metabolic issues in the antihypertensive and lipid-lowering heart attack trial study. Curr Hypertens Rep. 2004;6(2):106–10.

    Article  PubMed  Google Scholar 

  177. Harper R, Ennis CN, Sheridan B, Atkinson AB, Johnston GD, Bell PM. Effects of low dose versus conventional dose thiazide diuretic on insulin action in essential hypertension. Br Med J. 1994;309(6949):226–30.

    Article  CAS  Google Scholar 

  178. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group, The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 288(23):2002, 2981.

    Google Scholar 

  179. Reisin E, Weir MR, Falkner B, Hutchinson HG, Anzalone DA, Tuck ML. Lisinopril versus hydrochlorothiazide in obese hypertensive patients: a multicenter placebo-controlled trial. For the Treatment in Obese Patients with Hypertension (TROPHY) study group. Hypertension. 1997;30(1):140–5.

    Article  CAS  PubMed  Google Scholar 

  180. Barzilay JI, Davis BR, Cutler JA, Pressel SL, Whelton PK, Basile J, Margolis KL, Ong ST, Sadler LS, Summerson J, ALLHAT Collaborative Research Group. Fasting glucose levels and incident diabetes mellitus in older nondiabetic adults randomized to receive 3 different classes of antihypertensive treatment: a report from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2006;166(2):2191–201.

    Article  CAS  PubMed  Google Scholar 

  181. Black HR, Davis B, Barzilay J, Nwachuku C, Baimbridge C, Marginean H, Wright JT Jr, Basile J, Wong ND, Whelton P, Dart RA, Thadani U, Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Metabolic and clinical outcomes in nondiabetic individuals with the metabolic syndrome assigned to chlorthalidone, amlodipine, or Lisinopril as initial treatment for hypertension: a report from the Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial (ALLHAT). Diabetes Care. 2008;31(2):353–60.

    Article  CAS  PubMed  Google Scholar 

  182. Barzilay JI, Davis BR, Pressel SL, Cutler JA, Einhorn PT, Black HR, Cushman WC, Ford CE, Margolis KL, Moloo J, Oparil S, Piller LB, Simmons DL, Sweeney ME, Whelton PK, Wong ND, Wright JT Jr, ALLHAT Collaborative Research Group. Long-term effects of incident diabetes mellitus on cardiovascular outcomes in people treated for hypertension: the ALLHAT diabetes extension study. Circ Cardiovasc Qual Outcomes. 2012;5(2):153–62.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Rapoport MI, Hurd HF. Thiazide-induced glucose intolerance treated with potassium. Arch Intern Med. 1964;113:405–8.

    Article  CAS  PubMed  Google Scholar 

  184. Helderman JH, Elahi D, Andersen DK, Raizes GS, Tobin JD, Shocken D, Andres R. Prevention of the glucose intolerance of thiazide diuretics by maintenance of body potassium. Diabetes. 1983;32(2):106–11.

    Article  CAS  PubMed  Google Scholar 

  185. Reisin E, Graves JW, Yamal JM, Barzilay JI, Pressel SL, Einhorn PT, Dart RA, Retta TM, Saklayen MG, Davis BR, ALLHAT Collaborative Research Group. Blood pressure control and cardiovascular outcomes in normal-weight, overweight, and obese hypertensive patients treated with three different antihypertensives in ALLHAT. J Hypertens. 2014;32(7):1503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kintscher U, Bramlage P, Paar WD, Thoenes M, Unger T. Irbesartan for the treatment of hypertension in patients with the metabolic syndrome: a sub analysis of the treat to target post authorization survey. Prospective, observational two armed study in 14,200 patients. Cardiovasc Diabetol. 2007;6:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Prevenec M, Qi N, Wang J, Avery MA, Kurtz TW. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPAR gamma modulating activities. Hypertension. 2004;43(5):993–1002.

    Article  CAS  PubMed  Google Scholar 

  188. Schupp M, Janke J, Clasen R, Unger T, Kintsher U. Angiotensin type I receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation. 2004;109(17):2054–7.

    Article  CAS  PubMed  Google Scholar 

  189. Zappe DH, Sowers JR, Hsueh WA, Haffner SM, Deedwania PC, Fonseca VA, Keeling L, Sica DA. Metabolic and antihypertensive effects of combined angiotensin receptor blocker and diuretic therapy in Prediabetic hypertensive patients with the cardiometabolic syndrome. J Clin Hypertens. 2008;10(12):894–903.

    Article  CAS  Google Scholar 

  190. Niskanen L, Hedner T, Hanson L, Lanke J, Niklason A, CAPPP Study Group. Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/β-blocker-based Treatment Regimen: a subanalysis of the captopril prevention project. Diabetes Care. 2001;24:2091–6.

    Article  CAS  PubMed  Google Scholar 

  191. Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis risk in communities study. N Engl J Med. 2000;342:905–12.

    Article  CAS  PubMed  Google Scholar 

  192. Dahlof B, Devereux RB, Kjeldsen SE, Julius S, Beevers G, de Faire U, Fyhrquist F, Ibsen H, Kristiansson K, Lederballe-Pedersen O, Lindholm LH, Nieminen MS, Omvik P, Oparil S, Wedel H, LIFE Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention for Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet. 2002;359:995–1003.

    Article  CAS  PubMed  Google Scholar 

  193. Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, Messerli FH, Mancia G, Cangiano JL, Garcia-Barreto D, Keltaj M, Erdine S, Bristol HA, Kolb HR, Bakris GL, Cohen JD, Parmley WW, INVEST Investigators. A calcium antagonist versus a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA. 2003;290:2805–16.

    Article  CAS  PubMed  Google Scholar 

  194. Jacob S, Balletshofer B, Henriksen EJ, Volk A, Mehnert B, Loblein K, Haring HU, Rett K. Beta-blocking agents in patients with insulin resistance: effects of vasodilating beta-blockers. Blood Press. 1999;8(5-6):261–8.

    Article  CAS  PubMed  Google Scholar 

  195. Jacob S, Henriksen EJ. Metabolic properties of vasodilating beta blockers: management considerations for hypertensive diabetic patients and patients with the metabolic syndrome. J Clin Hypertens. 2004;6(12):690–6.

    Article  CAS  Google Scholar 

  196. Fonseca VA. Effects of beta-blockers on glucose and lipid metabolism. Curr Med Res Opin. 2010;26(3):615–29.

    Article  CAS  PubMed  Google Scholar 

  197. Taylor AA, Bakris GL. The role of vasodilating beta-blockers in patients with hypertension and the cardiometabolic syndrome. Am J Med. 2010;123(7 Supplement 1):S21–6.

    Article  CAS  PubMed  Google Scholar 

  198. Deedwania P. Hypertension, dyslipidemia, and insulin resistance in patients with diabetes mellitus or the cardiometabolic syndrome: benefits of vasodilating beta-blockers. J Clin Hypertens. 2011;13(1):52–9.

    Article  CAS  Google Scholar 

  199. Fares H, Lavie CJ, Ventura HO. Vasodilating versus first-generation beta-blockers for cardiovascular protection. Postgrad Med. 2012;124(2):7–15.

    Article  PubMed  Google Scholar 

  200. Fergus IV, Connell KL, Ferdinand KC. A comparison of vasodilating and non-vasodilating beta-blockers and their effects on cardiometabolic risk. Curr Cardiol Rep. 2015;17:38.

    Article  PubMed  Google Scholar 

  201. Reisin E, Owen J. Treatment: special conditions. Metabolic syndrome: obesity and the hypertension connection. J Am Soc Hypertens. 2015;9(2):156–9.

    Article  PubMed  Google Scholar 

  202. Jamerson K, Weber MA, Bakris GL, Dahlof B, Pitt B, Shi V, Hester A, Gupte J, Gatlin M, Velazquez EJ, ACCOMPLISH Trial Investigators. N Engl J Med. 2008;359(23):2417–28.

    Article  CAS  PubMed  Google Scholar 

  203. Ernst ME, Carter BL, Basile JN. All thiazide-like diuretics are not chlorthalidone: putting the ACCOMPLISH study into perspective. J Clin Hypertens. 2009;11(1):5–10.

    Article  CAS  Google Scholar 

  204. Weber MA, Jamerson K, Bakris GL, Weir MR, Zappe D, Zhang Y, Dahlof B, Velazquez EJ, Pitt B. Effects of body size and hypertension treatments on cardiovascular event rates: subanalysis of the ACCOMPLISH randomized controlled trial. Lancet. 2013;381:537–45.

    Article  PubMed  Google Scholar 

  205. National Clinical Guideline Centre. Hypertension: the clinical management of primary hypertension in adults: update of clinical guidelines 18 to 34. Royal College of Physicians (UK) 2011.

    Google Scholar 

  206. The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC). 2013 ESH/ESC guidelines for the management of arterial hypertension. J Hypertens. 2013;31:1281–357.

    Article  CAS  Google Scholar 

  207. Dasqupta K, Quinn RR, Zarnke KB, Rabi DM, Ravani P, Daskalopoulou SS, Rabkin SW, Trudeau L, Feldman RD, Cloutier L, Prebtani A, Herman RJ, Bacon SL, Gilbert RE, Ruzicka M, McKay DW, Campbell TS, Grover S, Honos G, Schiffrin EL, Bolli P, Wilson TW, Lindsay P, Hill MD, Coutts SB, Gubitz G, Gelfer M, Vallee M, Prasad GV, Lebel M, McLean D, Arnold JM, Moe GW, Howlett JG, Boulanger JM, Larochelle P, Leiter LA, Jones C, Ogilvie RI, Woo V, Kaczorowski J, Burns KD, Petrella RJ, Hiremath S, Milot A, Stone JA, Drouin D, Lavoie KL, Lamarre-Cliché M, Tremblay G, Hamet P, Fordor G, Carruthers SG, Pylypchuk GB, Burgess E, Lewanczuk R, Dresser GK, Penner SB, Hegele RA, McFarlane PA, Khara M, Pipe A, Oh P, Selby P, Sharma M, Reid DJ, Tobe SW, Padwal RS, Poirer L, Canadian Hypertension Education Program. The 2014 Canadian hypertension education program recommendations for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can J Cardiol. 2014;30(5):485–501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efrain Reisin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owen, J., Morse, S., McLean, A., Reisin, E. (2019). Obesity-Hypertension Physiopathology and Treatment: A Forty-Year Retrospect. In: Zimlichman, R., Julius, S., Mancia, G. (eds) Prehypertension and Cardiometabolic Syndrome. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-75310-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75310-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75309-6

  • Online ISBN: 978-3-319-75310-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics