Early Changes in Renal Vasculature in Prehypertension

  • Hermann HallerEmail author
  • Anna Bertram
  • Klaus Stahl
  • Jan Menne
Part of the Updates in Hypertension and Cardiovascular Protection book series (UHCP)


The microvasculature of the kidney is one of the first culprits of an increase in blood pressure. The sensitive structures in the cortex and in the papilla of the kidney are affected in several ways. The endothelial cells are challenged by an increase in circulating and locally released hormones such as angiotensin II, sympathetic activition and endothelins. In addition, the local disturbance in blood flow activates the endothelial cells. At the same time a decrease in oxygen consumption and less NO together with hemodynamic alterations and metabolic changes leads to “endothelial dysfunction.” The activated endothelial cells express more adhesion molecules, release proteases, and increase the expression of cytokines. All these factors lead on the one hand to increased adhesion of circulating blood cells such as monocytes which infiltrate the interstitial tissue of the kidney early. In addition, the release of proteases leads to a loss of glycocalyx and a changed behavior of these surface molecules. The loss of glycocalyx plays not only a role in adhesion and inflammation but also changes the storage capacities of the endothelium for salt and water. Lastly, the loss of growth factors such as VEGF leads to capillary rarefaction, endothelial dedifferentiation, and therefore to a loss of nephrons. Altogether these early mechanisms in hypertension result in interstitial injury with rarefaction of vasculature and nephrons. Therefore the remaining nephrons are exposed to more work load, altered metabolism, and enhanced sensitivity to circulating hormones. Clinically these early changes are not yet clinically detectable but provide the ground work for the renal damage in hypertensive patients in the future.


Endothelium Glycocalyx Adhesion molecules Monocytes Inflammation VEGF Capillary rarefaction Nephron loss Interstitial inflammation 


  1. 1.
    Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–52.CrossRefGoogle Scholar
  2. 2.
    Wang Y, Wang QJ. The prevalence of prehypertension and hypertension among US adults according to the new joint national committee guide- lines: new challenges of the old problem. Arch Intern Med. 2004;164:2126–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, Black HR, Grimm RH Jr, Messerli FH, Oparil S, Schork MA. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med. 2006;354:1685–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Vasan RS, Larson MG, Leip EP, Evans JC, O’Donnell CJ, Kannel WB, Levy D. Impact of high-normal blood pressure on the risk of cardiovas- cular disease. N Engl J Med. 2001;345:1291–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Menne J, Ritz E, Ruilope LM, Chatzikyrkou C, Viberti G, Haller H. The Randomized Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) observational follow-up study: benefits of RAS blockade with olmesartan treatment are sustained after study discontinuation. J Am Heart Assoc. 2014;3(2):e000810.CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dys-function: testing and clinical relevance. Circulation. 2007;115:1285–95.CrossRefGoogle Scholar
  7. 7.
    Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation. 2004;109:II27–33.CrossRefPubMedGoogle Scholar
  8. 8.
    Taddei S, Virdis A, Mattei P, Ghiadoni L, Sudano I, Salvetti A. Defective L-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation. 1996;94:1298–303.CrossRefPubMedGoogle Scholar
  9. 9.
    Schlaich MP, Parnell MM, Ahlers BA, Finch S, Marshall T, Zhang WZ, Kaye DM. Impaired L-arginine transport and endothelial function in hypertensive and genetically predisposed normotensive subjects. Circulation. 2004;110:3680–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Baylis C. Nitric oxide synthase derangements and hypertension in kidney disease. Curr Opin Nephrol Hypertens. 2012;21:1–6.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Vaziri ND. Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens. 2004;13:93–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Wilcox CS. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Physiol Regul Integr Comp Physiol. 2005;289:R913–35.CrossRefPubMedGoogle Scholar
  13. 13.
    Teerlink T, Luo Z, Palm F, Wilcox CS. Cellular ADMA: regulation and action. Pharmacol Res. 2009;60:448–60.CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Schwedhelm E, Böger RH. The role of asymmetric and symmetric dimethylarginines in renal disease. Nat Rev Nephrol. 2011;7:275–85.CrossRefPubMedGoogle Scholar
  15. 15.
    Kielstein JT, Donnerstag F, Gasper S, Menne J, Kielstein A, Martens-Lobenhoffer J, Scalera F, Cooke JP, Fliser D, Bode-Böger SM. ADMA increases arterial stiffness and decreases cerebral blood flow in humans. Stroke. 2006;37(8):2024–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Kielstein JT, Simmel S, Bode-Böger SM, Roth HJ, Schmidt-Gayk H, Haller H, Fliser D. Subpressor dose asymmetric dimethylarginine modulates renal function in humans through nitric oxide synthase inhibition. Kidney Blood Press Res. 2004;27(3):143–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Surdacki A, Nowicki M, Sandmann J, Tsikas D, Boeger RH, Bode-Boeger SM, Kruszelnicka-Kwiatkowska O, Kokot F, Dubiel JS, Froelich JC. Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetric dimethylarginine in men with essential hypertension. J Cardiovasc Pharmacol. 1999;33:652–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Tain YL, Baylis C. Determination of dimethylarginine dimethylaminohydrolase activity in the kidney. Kidney Int. 2007;72:886–9.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Lee SK, Arunkumar S, Sirajudeen KN, Singh HJ. Glutathione system in young spontaneously hypertensive rats. J Physiol Biochem. 2010;66:321–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Fan NC, Tsai CM, Hsu CN, Huang LT, Tain YL. N-Acetylcysteine prevents hypertension via regulation of the ADMA–DDAH pathway in young spontaneously hypertensive rats. Biomed Res Int. 2013;2013:696317.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Chien SJ, Lin KM, Kuo HC, Huang CF, Lin YJ, Huang LT, Tain YL. Two different approaches to restore renal nitric oxide and prevent hypertension in young spontaneously hypertensive rats: L-Citrulline and nitrate. Transl Res. 2014;163:43–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Carlström M, Persson AE, Larsson E, Hezel M, Scheffer PG, Teerlink T, Weitzberg E, Lundberg JO. Dietary nitrate attenuates oxidative stress, prevents cardiac and renal injuries, and reduces blood pressure in salt-induced hypertension. Cardiovasc Res. 2011;89:574–85.CrossRefPubMedGoogle Scholar
  23. 23.
    Böger RH, Maas R, Schulze F, Schwedhelm E. Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality—an update on patient populations with a wide range of cardiovascular risk. Pharmacol Res. 2009;60:481–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Johnson RJ, Gordon KL, Giachelli C, Kurth T, Skelton MM, Cowley AW Jr. Tubulointerstitial injury and loss of nitric oxide synthases parallel the development of hypertension in the Dahl-SS rat. J Hypertens. 2000;18:1497–505.CrossRefPubMedGoogle Scholar
  25. 25.
    Johnson RJ, Gordon KL, Suga S, Duijvestijn AM, Griffin K, Bidani A. Renal injury and salt-sensitive hypertension after exposure to catecholamines. Hypertension. 1999;34:151–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Kusche-Vihrog K, Oberleithner H. An emerging concept of vascular salt sensitivity. F1000 Biol Rep. 2012;4:20.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Oberleithner H. Vascular endothelium: a vulnerable transit zone for merciless sodium. Nephrol Dial Transplant. 2014;29:240–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000;440:653–66.CrossRefPubMedGoogle Scholar
  29. 29.
    Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, Oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454(3):345–59.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Pot C, Chen AY, Ha JN, Schmid-Schonbein GW. Proteolytic cleavage of the red blood cell glycocalyx in a genetic form of hypertension. Cell Mol Bioeng. 2011;4:678–92.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Kumase F, Morizane Y, Mohri S, Takasu I, Ohtsuka A, Ohtsuki H. Glycocalyx degradation in retinal and choroidal capillary endothelium in rats with diabetes and hypertension. Acta Med Okayama. 2010;64:277–83.PubMedGoogle Scholar
  32. 32.
    Parra G, Quiroz Y, Salazar J, Bravo Y, Pons H, Chavez M, Johnson RJ, Rodriguez-Iturbe B. Experimental induction of salt-sensitive hypertension is associated with lym- phocyte proliferative response to HSP70. Kidney Int Suppl. 2008;74:S55–9.CrossRefGoogle Scholar
  33. 33.
    Muller DN, Dechend R, Mervaala EMA, Park J-K, Schmidt F, Fiebeler A, Theuer J, Breu V, Ganten D, Haller H, Luft FC. NF-{kappa}B inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension. 2000;35:193–201.CrossRefPubMedGoogle Scholar
  34. 34.
    Muller DN, Shagdarsuren E, Park JK, Dechend R, Mervaala E, Hampich F, Fiebeler A, Ju X, Finckenberg P, Theuer J, Viedt C, Kreuzer J, Heidecke H, Haller H, Zenke M, Luft FC. Immunosuppressive treatment protects against angiotensin II-induced renal damage. Am J Pathol. 2002;161:1679–93.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Kim M, Jung S, Yeon Kim S, Lee S-H, Lee JH. Prehypertension-associated elevation in circulating lysophosphatidlycholines, Lp-PLA2 activity, and oxidative stress. PLoS One. 2014;9(5):e96735.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Niskanen L, Laaksonen DE, Nyyssonen K, Punnonen K, Valkonen VP, Fuentes R, Tuomainen TP, Salonen R, Salonen JT. Inflammation, abdominal obesity, and smoking as predictors of hypertension. Hypertension. 2004;44:859–65.CrossRefPubMedGoogle Scholar
  37. 37.
    Gesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. JAMA. 2003;290:2945–51.CrossRefGoogle Scholar
  38. 38.
    Tatsukawa Y, Hsu WL, Yamada M, Cologne JB, Suzuki G, Yamamoto H, Yamane K, Akahoshi M, Fujiwara S, Kohno N. White blood cell count, especially neutrophil count, as a predictor of hypertension in a Japanese popu-lation. Hypertens Res. 2008;31:1391–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Stumpf C, John S, Jukic J, Yilmaz A, Raaz D, Schmieder RE, Daniel WG, Garlichs CD. Enhanced levels of platelet P- selectin and circulating cytokines in young patients with mild arterial hypertension. J Hypertens. 2005;23:995–1000.CrossRefPubMedGoogle Scholar
  40. 40.
    McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end-organ damage. Circ Res. 2015;116(6):1022–33.CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Foss JD, Kirabo A, Harrison DG. Do high-salt microenvironments drive hypertensive inflammation? Am J Physiol Regul Integr Comp Physiol. 2017;312(1):R1–4.CrossRefPubMedGoogle Scholar
  42. 42.
    Rops AL, Loeven MA, van Gemst JJ, Eversen I, Van Wijk XM, Dijkman HB, van Kuppevelt TH, Berden JH, Rabelink TJ, Esko JD, van der Vlag J. Modulation of heparan sulfate in the glomerular endothelial glycocalyx decreases leukocyte influx during experimental glomerulonephritis. Kidney Int. 2014;86(5):932–42.CrossRefPubMedGoogle Scholar
  43. 43.
    Rops AL, van den Hoven MJ, Baselmans MM, Lensen JF, Wijnhoven TJ, van den Heuvel LP, van Kuppevelt TH, Berden JH, van der Vlag J. Heparan sulfate domains on cultured activated glomerular endothelial cells mediate leukocyte trafficking. Kidney Int. 2008;73(1):52–62.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Hermann Haller
    • 1
    Email author
  • Anna Bertram
    • 1
  • Klaus Stahl
    • 1
  • Jan Menne
    • 1
  1. 1.Department of NephrologyHannover Medical SchoolHannoverGermany

Personalised recommendations