Skip to main content

Ejector Design

  • Chapter
  • First Online:
Ejectors for Efficient Refrigeration

Abstract

Ejector design may be performed at various levels of complexity. In many cases, ejectors are designed in a rather empirical way, and the only elements of the ejector geometry that receive a calculation effort are the main flow sections. Other elements, like the mixing zone length or the angle of the secondary flow inlet, are left to the experience of the designer. The effect of other details, like the presence of fillets between conical and cylindrical parts, is also neglected.

Indeed, a detailed analysis of the influence of geometrical details on the supersonic flow is not feasible with analytical tools. The only way to get a complete picture of the flow field is to analyze the ejector by a Computational Fluid Dynamics (CFD) approach. However, it must be stressed that CFD is not a design tool. The complete geometry of the ejector must be known in advance before any CFD analysis is attempted. Eventually, the design may be modified in order to mitigate any problem that could be revealed by the CFD results, but there is no way to state that all possible design options have been explored.

Probably, a hybrid approach combining a first scrutiny of possible configurations and a subsequent CFD analysis could be an answer. In the following sections, a few simple design tools will be presented, while the potential offered by up-to-date CFD techniques will be resumed in the following chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first-law efficiency cannot be defined for an adiabatic ejector because energy is conserved.

  2. 2.

    This should be the best configuration for loss reduction in a real machine, because the compressor deals just with the secondary flow and works with a lower pressure ratio. For an ideal cycle, it doesn’t matter which of the two options is selected, because there are no losses in any case.

  3. 3.

    McGovern et al. (2012) call this reversible entrainment ratio efficiency, η RER.

  4. 4.

    This is simply a particular kind of surrogate modeling approach in which the response surface is explored by means of a genetic algorithm.

  5. 5.

    Despite this, the two parts of the system can produce and require different “work per cycle” and have different areas in a T-s diagram depending on the corresponding mass of the operating fluid.

References

  • Arbel, A., et al. (2003). Ejector irreversibility characteristics. Transactions of the ASME. Journal of Fluids Engineering, 125, 121–129.

    Article  Google Scholar 

  • Bejan, A. (1996). Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics, 79(3), 1191–1218.

    Article  Google Scholar 

  • Bejan, A., Vargas, J., & Sokolov, M. (1995). Optimal allocation of a heat-exchanger inventory in heat driven refrigerators. International Journal of Heat and Mass Transfer, 38, 2997–3004.

    Article  Google Scholar 

  • Besagni, G., Mereu, R., & Inzoli, F. (2016). Ejector refrigeration: a comprehensive review. Renewable and Sustainable Energy Reviews, 53, 373–407.

    Article  Google Scholar 

  • Brown, B., & Argrow, B. (1999). Calculation of supersonic minimum length nozzle for equilibrium flow. Inverse Problem in Engineering, 7, 66–95.

    Article  Google Scholar 

  • Chang, Y.-J., & Chen, Y.-M. (2000). Enhancement of a steam-jet refrigerator using a novel application of the petal nozzle. Experimental Thermal and Fluid Science, 22, 203–211.

    Article  Google Scholar 

  • Chunnanond, K., & Aphornratana, S. (2004). An experimental investigation of a steam ejector. Applied Thermal Engineering, 24, 311–322.

    Article  Google Scholar 

  • Dvorak, V. (2007). Shape optimization and computational analysis of axisymmetric ejector. Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows. Lyon.

    Google Scholar 

  • Eames, I. (2002). A new prescription for the design of supersonic jet-pumps: the constant rate of momentum change method. Applied Thermal Engineering, 22, 121–131.

    Article  Google Scholar 

  • Eames, I., Milazzo, A., Paganini, D., & Livi, M. (2013). The design, manufacture and testing of a jet-pump chiller for air conditioning and industrial application. Applied Thermal Engineering, 58, 234–240.

    Article  Google Scholar 

  • ESDU. (1986). Ejectors and jet pumps, data item 86030. London, UK: ESDU International Ltd.

    Google Scholar 

  • Eves, J., et al. (2012). Design optimization of supersonic jet pumps using high fidelity flow analysis. Structural and Multidisciplinary Optimization, 45, 739–745.

    Article  MATH  Google Scholar 

  • Fan, J., et al. (2011). Computational fluid dynamic analysis and design optimization of jet pumps. Computers & Fluids, 46, 212–217.

    Article  MATH  Google Scholar 

  • Gordon, J., & Ng, K. (2000). Cool thermodynamics. Cambridge, UK: Cambridge International Science Publishing.

    Google Scholar 

  • Grazzini, G. & D’Albero, M. (1998, June 2–5). A Jet-Pump inverse cycle with water pumping column. Proceedings of natural working fluids ’98. Oslo.

    Google Scholar 

  • Grazzini, G., & Mariani, A. (1998). A simple program to design a multi-stage jet-pump for refrigeration cycles. Energy Conversion and Management, 39, 1827–1834.

    Article  Google Scholar 

  • Grazzini, G., & Rocchetti, A. (2002). Numerical optimization of a two-stage ejector refrigeration plant. International Journal of Refrigeration, 25, 621–633.

    Article  Google Scholar 

  • Grazzini, G., & Rocchetti, A. (2008). Influence of the objective function on the optimisation of a steam ejector cycle. International Journal of Refrigeration, 31, 510–515.

    Article  Google Scholar 

  • Grazzini, G., Rocchetti, A. & Eames, I. (2004). A new ejector design method discloses potential improvements to the performance of jet-pump cycle refrigerators. Heat Powered Cycle Conference, Larnaca.

    Google Scholar 

  • Grazzini, G., Milazzo, A., & Paganini, D. (2012). Design of an ejector cycle refrigeration system. Energy Conversion and Management, 54, 38–46.

    Article  Google Scholar 

  • Grazzini, G., Mazzelli, F. & Milazzo, A. (2015, May 18–19). Constructal design of the mixing zone inside a supersonic ejector. Constructal Law & Second Law Conference, Parma.

    Google Scholar 

  • Hoffman, J., Scofield, M., & Thompson, H. (1972). Thrust nozzle optimization including boundary layer effects. Journal of Optimization Theory and Applications, 10, 133–159.

    Article  MathSciNet  MATH  Google Scholar 

  • Huang, B., Chang, J., Wang, C., & Petrenko, V. (1999). A 1-D analysis of ejector performance. International Journal of Refrigeration, 22, 354–364.

    Article  Google Scholar 

  • Huang, B., Hu, S., & Lee, S. (2006). Development of an ejector cooling system with thermal pumping effect. International Journal of Refrigeration, 29, 476–484.

    Article  Google Scholar 

  • Husain, A., Sonawat, A., Mohan, S., & Samad, A. (2016). Energy efficient design of a jet pump by ensemble of surrogates and evolutionary approach. International Journal of Fluid Machinery and Systems, 9, 265–276.

    Article  Google Scholar 

  • Kasperski, J. (2009). Two kinds of gravitational ejector refrigerator stimulation. Applied Thermal Engineering, 29, 3380–3385.

    Article  Google Scholar 

  • Keenan, J., Neumann, E., & Lustwerk, F. (1950). An investigation of ejector design by analysis and experiment. Journal of Applied Mechanics, 17, 299–309.

    Google Scholar 

  • Kim, S., Jin, J., & Kwon, S. (2006). Experimental investigation of an annular injection supersonic ejector. AIAA Journal, 44(8), 1905–1908.

    Article  Google Scholar 

  • Kock, F., & Herwig, H. (2004). Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions. International Journal of Heat and Mass Transfer, 47, 2205–2215.

    Article  MATH  Google Scholar 

  • Kong, F., & Kim, H. (2016). Optimization study of a two-stage ejector–diffuser system. International Journal of Heat and Mass Transfer, 101, 1151–1162.

    Article  Google Scholar 

  • Kracík, J. & Dvorák, V. (2015). Experimental and numerical investigation of an air to air supersonic ejector for propulsion of a small supersonic wind tunnel. EPJ Web of Conferences. EFM14 – Experimental Fluid Mechanics, s.l.

    Google Scholar 

  • Lee, M., et al. (2016). Optimization of two-phase R600a ejector geometries using a non-equilibrium CFD model. Applied Thermal Engineering, 109, 272–282.

    Article  Google Scholar 

  • Little, A., & Garimella, S. (2016). A critical review linking ejector flow phenomena with component- and system-level performance. International Journal of Refrigeration, 70, 243–268.

    Article  Google Scholar 

  • Locatelli, M., & Schoen, F. (2013). Global optimization; theory, algorithms, and applications. s.l.: MOS-SIAM.

    Book  MATH  Google Scholar 

  • Mazzelli, F. (2015). Single & two-phase supersonic ejectors for refrigeration applications (Ph.D. thesis). Florence.

    Google Scholar 

  • McGovern, R., Narayan, G., & Lienhard, J. (2012). Analysis of reversible ejectors and definition of an ejector efficiency. International Journal of Thermal Sciences, 54, 153–166.

    Article  Google Scholar 

  • Milazzo, M., & Rocchetti, A. (2015). Modelling of ejector chillers with steam and other working fluids. International Journal of Refrigeration, 57, 277–287.

    Article  Google Scholar 

  • Milli, A. (2006). Development and application of numerical methods for the aerodynamic design and optimisation of turbine components (Ph.D. thesis). Università degli Studi di Firenze, s.l.

    Google Scholar 

  • Munday, J. T., & Bagster, D. F. (1977). A new ejector theory applied to steam jet refrigeration. Industrial & Engineering Chemistry Process Design and Development, 164, 442–449.

    Article  Google Scholar 

  • Nguyen, V., Riffat, S., & Doherty, P. (2001). Development of a solar-powered passive ejector cooling system. Applied Thermal Engineering, 21, 157–168.

    Article  Google Scholar 

  • Nocedal, J., & Wright, S. (2006). Numerical optimization. s.l.: Springer.

    MATH  Google Scholar 

  • Opgenorth, M., Sederstroma, D., McDermott, W., & Lengsfeld, C. (2012). Maximizing pressure recovery using lobed nozzles in a supersonic ejector. Applied Thermal Engineering, 37, 396–402.

    Article  Google Scholar 

  • Palacz, P., et al. (2016). CFD-based shape optimisation of a CO2 two-phase ejector mixing section. Applied Thermal Engineering, 95, 62–69.

    Article  Google Scholar 

  • Palacz, P., et al. (2017). Shape optimisation of a two-phase ejector for CO2 refrigeration systems. International Journal of Refrigeration, 74, 212–223.

    Article  Google Scholar 

  • Polanco, G., Holdøb, A.E., & Mundayc, G. (2010). General review of flashing jet studies. Journal of Hazard Material, 173, 2–18.

    Google Scholar 

  • Pope, A., & Goin, K. (1978). High-speed wind tunnel testing. s.l.: Wiley.

    Google Scholar 

  • Rao, S., & Jagadeesh, G. (2014). Novel supersonic nozzles for mixing enhancement in supersonic ejectors. Applied Thermal Engineering, 71, 62–71.

    Article  Google Scholar 

  • Riffat, S. B. (1996). International, Patent No. PCT-GB96-00855.

    Google Scholar 

  • Riffat, S., & Holt, A. (1998). A novel heat pipe/ejector cooler. Applied Thermal Engineering, 18, 93–101.

    Article  Google Scholar 

  • Shahpar, S. (2004). Automatic aerodynamic design optimisation of turbomachinery components – an industrial perspective, von Karman lecture series 2004–7. s.l.: American Institute of Aeronautics and Astronautics.

    Google Scholar 

  • Shen, S., et al. (2005). Study of a gas-liquid ejector and its application to a solar-powered bi-ejector refrigeration system. Applied Thermal Engineering, 25, 2891–2902.

    Article  Google Scholar 

  • Shope, F. (2006, June 5–8). Contour design techniques for super/hypersonic wind tunnel nozzles. 24th applied aerodynamics conference. AIAA, San Francisco.

    Google Scholar 

  • Shyy, W., Papila, N., Vaidyanathan, R., & Tucker, K. (2001). Global design optimization for aerodynamics and rocket propulsion components. Progress in Aerospace Sciences, 37, 59–118.

    Article  Google Scholar 

  • Sierra-Pallares, J., García del Valle, J., García Carrascal, P., & Castro Ruiz, F. (2016). A computational study about the types of entropy generation in three different R134a ejector mixing chambers. International Journal of Refrigeration, 63, 199–213.

    Article  Google Scholar 

  • Smits, A., & Dussauge, J.-P. (2006). Turbulent shear layers in supersonic flow (2nd ed.). New York: Springer.

    Google Scholar 

  • Srikrishnan, A., Kurian, J., & Sriramulu, V. (1996). Experimental study on mixing enhancement by petal nozzle in supersonic flow. Journal of Propulsion and Power, 12(1), 165–169.

    Article  Google Scholar 

  • Srisastra, P., & Aphornratana, S. (2005). A circulating system for a steam jet refrigeration system. Applied Thermal Engineering, 25, 2247–2257.

    Article  Google Scholar 

  • Srisastra, P., Aphornratana, S., & Sriveerakul, T. (2008). Development of a circulating system for a jet refrigeration cycle. International Journal of Refrigeration, 31, 921–929.

    Article  Google Scholar 

  • Wang, J., Wu, J., Hu, S., & Huang, B. (2009). Performance of ejector cooling system with thermal pumping effect using R141b and R365mfc. Applied Thermal Engineering, 29, 1904–1912.

    Article  Google Scholar 

  • Worall, M. (2001). An investigation of a jet-pump thermal (ice) storage system powered by low-grade heat (Ph.D. thesis). University of Nottingham, s.l.

    Google Scholar 

  • Yadav, R., & Patwardhan, A. (2008). Design aspects of ejectors: effects of suction chamber geometry. Chemical Engineering Science, 63, 3886–3897.

    Article  Google Scholar 

  • Yapici, R., et al. (2008). Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio. International Journal of Refrigeration, 31, 1183–1189.

    Article  Google Scholar 

  • Zhu, Y., Cai, W., Wen, C., & Li, Y. (2009). Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering, 29, 898–905.

    Article  Google Scholar 

  • Ziapour, B., & Abbasy, A. (2010). First and second laws analysis of the heat pipe/ejector refrigeration cycle. Energy, 35, 3307–3314.

    Article  Google Scholar 

  • Zucrow, M. (1976). Gas dynamics. s.l.: Wiley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grazzini, G., Milazzo, A., Mazzelli, F. (2018). Ejector Design. In: Ejectors for Efficient Refrigeration. Springer, Cham. https://doi.org/10.1007/978-3-319-75244-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75244-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75243-3

  • Online ISBN: 978-3-319-75244-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics