Secretion of Chromosomal DNA by the Neisseria gonorrhoeae Type IV Secretion System

  • Melanie M. Callaghan
  • Jan-Hendrik Heilers
  • Chris van der Does
  • Joseph P. Dillard
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 413)

Abstract

Approximately 80% of Neisseria gonorrhoeae and 17.5% of Neisseria meningitidis clinical isolates carry a ~59 kb genomic island known as the gonococcal genetic island (GGI). About half of the GGI consists of genes encoding a type IV secretion system (T4SS), and most of these genes are clustered in a ~28 kb region at one end of the GGI. Two additional genes (parA and parB) are found at the other end of the island. The remainder of the GGI consists mostly of hypothetical proteins, with several being identified as DNA-binding or DNA-processing proteins. The T4SS genes show similarity to those of the F-plasmid family of conjugation systems, with similarity in gene order and a low but significant level of sequence identity for the encoded proteins. However, several GGI-encoded proteins are unique from the F-plasmid system, such as AtlA, Yag, and TraA. Interestingly, the gonococcal T4SS does not act as a conjugation system. Instead, this T4SS secretes ssDNA into the extracellular milieu, where it can serve to transform highly competent Neisseria species, thereby increasing the transfer of genetic information. Although many of the T4SS proteins are expressed at low levels, this system has been implicated in several cellular processes. The secreted ssDNA is involved in the initial stages of biofilm formation, and the presence of the T4SS enables TonB-independent intracellular survival of N. gonorrhoeae strains during infection of cervical cells. Other GGI-like T4SSs have been identified in several other α-, β-, and γ-proteobacteria, but the function of these GGI-like T4SSs is unknown. Remarkably, the presence of the GGI is related to resistance to several antibiotics. Here, we describe our current knowledge about the GGI and its unique ssDNA-secreting T4SS.

Keywords

Chromosomal DNA Neisseria gonorrhoeae Type IV secretion system 

Notes

Acknowledgements

This work was supported in part by funding from the National Institutes of Health (NIH) grant R01AI047958.

References

  1. Ambur OH, Frye SA, Tønjum T (2007) New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J Bacteriol 189(5):2077–2085.  https://doi.org/10.1128/JB.01408-06 CrossRefPubMedGoogle Scholar
  2. Aravind L, Koonin EV (1998) The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem Sci 23(12):469–472.  https://doi.org/10.1016/S0968-0004(98)01293-6 CrossRefPubMedGoogle Scholar
  3. Atmakuri K, Cascales E, Burton OT, Banta LM, Christie PJ (2007) Agrobacterium ParA/MinD-like VirC1 spatially coordinates early conjugative DNA transfer reactions. EMBO J 26(10):2540–2551.  https://doi.org/10.1038/sj.emboj.7601696 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Audette GF, Manchak J, Beatty P, Klimke WA, Frost LS (2007) Entry exclusion in F-like plasmids requires intact TraG in the donor that recognizes its cognate TraS in the recipient. Microbiology 153(2):442–451.  https://doi.org/10.1099/mic.0.2006/001917-0
  5. Babic A, Lindner AB, Vulic M, Stewart EJ, Radman M (2008) Direct visualization of horizontal gene transfer. Science 319(5869):1533–1536.  https://doi.org/10.1126/science.1153498 CrossRefPubMedGoogle Scholar
  6. Backert S, Meyer TF (2006) Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9(2):207–217.  https://doi.org/10.1016/j.mib.2006.02.008 CrossRefPubMedGoogle Scholar
  7. Baron C, Llosa M, Zhou S, Zambryski PC (1997) VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1*. J Bacteriol 179(4):1203–1210.  https://doi.org/10.1128/jb.179.4.1203-1210.1997 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blakely G, May G, McCulloch R, Arciszewska LK, Burke M, Lovett ST, Sherratt DJ (1993) Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75(2):351–361.  https://doi.org/10.1016/0092-8674(93)80076-Q CrossRefPubMedGoogle Scholar
  9. Boyle-Vavra S, Seifert HS (1995) Shuttle mutagenesis: a mini-transposon for producing PhoA fusions with exported proteins in Neisseria gonorrhoeae. Gene 155(1):101–106.  https://doi.org/10.1016/0378-1119(94)00890-5 CrossRefPubMedGoogle Scholar
  10. Cabezón E, Ripoll-Rozada J, Peña A, de la Cruz F, Arechaga I (2015) Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 39(1):81–95.  https://doi.org/10.1111/1574-6976.12085 PubMedGoogle Scholar
  11. Carnoy C, Roten CA (2009) The dif/Xer recombination systems in Proteobacteria. PLoS ONE 4(9):e6531.  https://doi.org/10.1371/journal.pone.0006531 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Castillo F, Benmohamed A, Szatmari G (2017) Xer site specific recombination: double and single recombinase systems. Front Microbiol 8(453).  https://doi.org/10.3389/fmicb.2017.00453
  13. Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, Waksman G (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462(7276):1011–1015.  https://doi.org/10.1038/nature08588 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen H, Wu Z, Chen R, Shuai J, Xu L, Yu Y, Tu Y (2008) Study on the classification of gonococcal island of different genotypes and effects of sac-4 gene on serum resistance of Neisseria gonorrhoeae. Chinese J Epidemiol 29(5):482–485Google Scholar
  15. Costa TRD, Ilangovan A, Ukleja M, Redzej A, Santini JM, Smith TK, Egelman EH, Waksman G (2016) Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166(6):1436–1444. e10.  https://doi.org/10.1016/j.cell.2016.08.025
  16. Dijkstra AJ, Keck W (1996) Peptidoglycan as a barrier to transenvelope transport. J Bacteriol 178(19):5555–5562.  https://doi.org/10.1007/b112047 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dillard JP (2014) Regulation of the gonococcal type IV secretion system involves two transcriptional repressors, two proteases, and an RNA switch. In: International pathogenic Neisseria conference. Asheville, North Carolina, USAGoogle Scholar
  18. Dillard JP, Seifert HS (2001) A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 41(1):263–277.  https://doi.org/10.1046/j.1365-2958.2001.02520.x CrossRefPubMedGoogle Scholar
  19. Dillard JP, Seifert HS (1997) A peptidoglycan hydrolase similar to bacteriophage endolysins acts as an autolysin in Neisseria gonorrhoeae. Mol Microbiol 25(5):893–901.  https://doi.org/10.1111/j.1365-2958.1997.mmi522.x CrossRefPubMedGoogle Scholar
  20. Domínguez NM, Hackett KT, Dillard JP (2011) XerCD-mediated site-specific recombination leads to loss of the 57-kb gonococcal genetic island. J Bacteriol 193(2):377–388.  https://doi.org/10.1128/JB.00948-10
  21. Dunne WM (2002) Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15(2):155–166.  https://doi.org/10.1128/CMR.15.2.155 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Eisenbrandt R, Kalkum M, Lai EM, Lurz R, Kado CI, Lanka E (1999) Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. J Biol Chem 274(32):22548–22555.  https://doi.org/10.1074/jbc.274.32.22548
  23. Eisenbrandt R, Kalkum M, Lurz R, Lanka E (2000) Maturation of IncP pilin precursors resembles the catalytic dyad-like mechanism of leader peptidases. J Bacteriol 182(23):6751–6761.  https://doi.org/10.1128/JB.182.23.6751-6761.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Firth N, Skurray R (1992) Characterization of the F plasmid bifunctional conjugation gene, traG. MGG Mol Gen Genet 232(1):145–153.  https://doi.org/10.1007/BF00299147 CrossRefPubMedGoogle Scholar
  25. Fournes F, Crozat E, Pages C, Tardin C, Salomé L, Cornet F, Rosseau P (2016) FtsK translocation permits discrimination between an endogenous and an imported Xer/dif recombination complex. Proc Natl Acad Sci 113(28):7882–7887.  https://doi.org/10.1073/pnas.1523178113 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Frost LS, Ippen-Ihler K, Skurray RA (1994) Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 58(2):162–210PubMedPubMedCentralGoogle Scholar
  27. Garcillán-Barcia MP, Francia MV, de la Cruz F (2009) The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 33:657–687.  https://doi.org/10.1111/j.1574-6976.2009.00168.x CrossRefPubMedGoogle Scholar
  28. Goodman SD, Scocca JJ (1988) Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc Natl Acad Sci USA 85(18):6982–6986.  https://doi.org/10.1073/pnas.85.18.6982 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in gram-negative and gram-positive bacteria. Mol Microbiol 107:455–471.  https://doi.org/10.1111/mmi.13896 PubMedGoogle Scholar
  30. Hagen TA, Cornelissen CN (2006) Neisseria gonorrhoeae requires expression of TonB and the putative transporter TdfF to replicate within cervical epithelial cells. Mol Microbiol 62(4):1144–1157.  https://doi.org/10.1111/j.1365-2958.2006.05429.x CrossRefPubMedGoogle Scholar
  31. Hamilton HL, Dillard JP (2006) Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol 59(2):376–385.  https://doi.org/10.1111/j.1365-2958.2005.04964.x CrossRefPubMedGoogle Scholar
  32. Hamilton HL, Domínguez NM, Schwartz KJ et al (2005) Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol Microbiol 55(6):1704–1721.  https://doi.org/10.1111/j.1365-2958.2005.04521.x CrossRefPubMedGoogle Scholar
  33. Hamilton HL, Schwartz KJ, Dillard JP (2001) Insertion-duplication mutagenesis of Neisseria: use in characterization of DNA transfer genes in the gonococcal genetic island. J Bacteriol 183(16):4718–4726.  https://doi.org/10.1128/JB.183.16.4718-4726.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Harrison OB, Clemence M, Dillard JP, Tang CM, Trees D, Grad YH, Maiden MCJ (2016) Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. J Infect 73(6):578–587.  https://doi.org/10.1016/j.jinf.2016.08.010 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hill SA, Masters TL, Wachter J (2016) Gonorrhea—an evolving disease of the new millennium. Microb Cell 3(9):371–389.  https://doi.org/10.15698/mic2016.09.524 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Huber KE, Waldor MK (2002) Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417(417):656–659.  https://doi.org/10.1038/nature00782 CrossRefPubMedGoogle Scholar
  37. Jain S, Kahnt J, van der Does C (2011) Processing and maturation of the pilin of the type IV secretion system encoded within the gonococcal genetic island. J Biol Chem 286(51):43601–43610.  https://doi.org/10.1074/jbc.M111.264028
  38. Jain S, Zweig M, Peeters E, Seiwering K, Hackett KH, Dillard JP, van der Does C (2012) Characterization of the single stranded DNA binding protein SsbB encoded in the gonoccocal genetic Island. PLoS ONE 7(4):e35285.  https://doi.org/10.1371/journal.pone.0035285 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kohler PL, Chan YA, Hackett KT, Turner N, Hamilton HL, Cloud-Hansen C, Dillard JP (2013) Mating pair formation homologue TraG is a variable membrane protein essential for contact-independent type IV secretion of chromosomal DNA by Neisseria gonorrhoeae. J Bacteriol 195(8):1666–1679.  https://doi.org/10.1128/JB.02098-12 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kohler PL, Hamilton HL, Cloud-Hansen K, Dillard JP (2007) AtlA functions as a peptidoglycan lytic transglycosylase in the Neisseria gonorrhoeae type IV secretion system. J Bacteriol 189(15):5421–5428.  https://doi.org/10.1128/JB.00531-07 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Larbig KD, Christmann A, Johann A, Klockgether J, Hartsch T, Merkl R, Wiehlmann L, Fritz HJ, Tümmler B (2002) Gene islands integrated into tRNAGly genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol 184(23):6665–6680.  https://doi.org/10.1128/JB.184.23.6665 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lawley TD, Klimke WA, Gubbins MJ, Frost LS (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224(1):1–15.  https://doi.org/10.1016/S0378-1097(03)00430-0 CrossRefPubMedGoogle Scholar
  43. Lutkenhaus J (2012) The ParA/MinD family puts things in their place. Trends Microbiol 20(9):411–418.  https://doi.org/10.1016/j.tim.2012.05.002 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Manwaring NP, Skurray RA, Firth N (1999) Nucleotide sequence of the F plasmid leading region. Plasmid 41:219–225.  https://doi.org/10.1006/plas.1999.1390 CrossRefPubMedGoogle Scholar
  45. McClure R, Nudel K, Massari P, Tjaden B, Su X, Rice PA, Genco CA (2015) The gonococcal transcriptome during infection of the lower genital tract in women. PLoS ONE 10(8):e0133982.  https://doi.org/10.1371/journal.pone.0133982 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Mcshan WM, Williams RP, Hull RA (1987) A recombinant molecule from a disseminating strain of Neisseria gonorrhoeae that confers serum bactericidal resistance. Infect Immun 55(12):3017–3022PubMedPubMedCentralGoogle Scholar
  47. Nowicki S, Ram P, Pham T, Goluszko P, Morse S, Anderson GD, Nowicki B (1997) Pelvic inflammatory disease isolates of Neisseria gonorrhoeae are distinguished by C1q-dependent virulence for newborn rats and by the sac-4 region. Infect Immun 65:2094–2099PubMedPubMedCentralGoogle Scholar
  48. Pachulec E (2010) The type IV secretion systems of Neisseria gonorrhoeae. Dissertation, University of GroningenGoogle Scholar
  49. Pachulec E, Siewering K, Bender T, Heller EM, Salgado-Pabón W, Schmoller SK, Woodhams KL, Dillard JP, van der Does C (2014) Functional analysis of the gonococcal genetic island of Neisseria gonorrhoeae. PLoS ONE 9(10):e109613.  https://doi.org/10.1371/journal.pone.0109613
  50. Ramsey ME, Bender T, Klimowicz AK, Hackett KT, Yamamoto A, Jolicoeur A, Callaghan MM, Wassarman KM, van der Does C, Dillard JP (2015) Targeted mutagenesis of intergenic regions in the Neisseria gonorrhoeae gonococcal genetic island reveals multiple regulatory mechanisms controlling type IV secretion. Mol Microbiol 97(6):1168–1185.  https://doi.org/10.1111/mmi.13094 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ramsey ME, Hackett KT, Bender T, Kotha C, van der Does C, Dillard JP (2014) TraK and TraB are conserved outer membrane proteins of the Neisseria gonorrhoeae type IV secretion system and are expressed at low levels in wild-type cells. J Bacteriol 196(16):2954–2968.  https://doi.org/10.1128/JB.01825-14 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Remmele CW, Xian Y, Albrecht M, Faulstich M, Fraunholz M, Heinrichs E, Dittrich MT, Müller T, Reinhardt R, Rudel T (2014) Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Res 42(16):10579–10595.  https://doi.org/10.1093/nar/gku762 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Roberts MAJ, Wadhams GH, Hadfield KA, Tickner S, Armitage JP (2012) ParA-like protein uses nonspecific chromosomal DNA binding to partition protein complexes. Proc Natl Acad Sci 109(17):6698–6703.  https://doi.org/10.1073/pnas.1114000109 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Salgado-Pabón W (2008) Neisseria gonorrhoeae processing of chromosomal DNA for direct secretion via a type IV secretion system: Requirement of a novel relaxase homologue. Dissertation, University of Wisconsin-MadisonGoogle Scholar
  55. Salgado-Pabón W, Du Y, Hackett KT, Lyons KM, Arvidson CG, Dillard JP (2010) Increased expression of the type IV secretion system in piliated Neisseria gonorrhoeae variants. J Bacteriol 192(7):1912–1920.  https://doi.org/10.1128/JB.01357-09 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Salgado-Pabón W, Jain S, Turner N, van der Does C, Dillard JP (2007) A novel relaxase homologue is involved in chromosomal DNA processing for type IV secretion in Neisseria gonorrhoeae. Mol Microbiol 66(4):930–947.  https://doi.org/10.1111/j.1365-2958.2007.05966.x.A CrossRefPubMedPubMedCentralGoogle Scholar
  57. Snyder LAS, Jarvis SA, Saunders NJ (2005) Complete and variant forms of the “gonococcal genetic island” in Neisseria meningitidis. Microbiology 151(12):4005–4013.  https://doi.org/10.1099/mic.0.27925-0 CrossRefPubMedGoogle Scholar
  58. Sparling PF (1966) Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 92(5):1364–1371PubMedPubMedCentralGoogle Scholar
  59. Spencer-Smith R, Roberts S, Gurung N, Snyder LA (2016) DNA uptake sequences in Neisseria gonorrhoeae as intrinsic transcriptional terminators and markers of horizontal gene transfer. Microb Genomics 2(8):1–11.  https://doi.org/10.1099/mgen.0.000069 CrossRefGoogle Scholar
  60. Steichen CT, Cho C, Shao JQ, Apicella MA (2011) The Neisseria gonorrhoeae biofilm matrix contains DNA, and an endogenous nuclease controls its incorporation. Infect Immun 79(4):1504–1511.  https://doi.org/10.1128/IAI.01162-10 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Unemo M (2015) Current and future antimicrobial treatment of gonorrhoea—the rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infect Dis 15(364):1–15.  https://doi.org/10.1186/s12879-015-1029-2 Google Scholar
  62. Vorkapic D, Pressler K, Schild S (2016) Multifaceted roles of extracellular DNA in bacterial physiology. Curr Genet 62:71–79.  https://doi.org/10.1007/s00294-015-0514-x CrossRefPubMedGoogle Scholar
  63. West SEH, Sparling PF (1985) Response of Neisseria gonorrhoeae to iron limitation: alterations in expression of membrane proteins without apparent siderophore production. Infect Immun 47(2):388–394PubMedPubMedCentralGoogle Scholar
  64. Woodhams KL, Benet ZL, Blonsky SE, Hackett KT, Dillard JP (2012) Prevalence and detailed mapping of the gonococcal genetic island in Neisseria meningitidis. J Bacteriol 194(9):2275–2285.  https://doi.org/10.1128/JB.00094-12 CrossRefPubMedPubMedCentralGoogle Scholar
  65. World Health Organization (2012) Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae Google Scholar
  66. Zola TA, Strange HR, Dominguez NM, Dillard JP, Cornelissen CN (2010) Type IV secretion machinery promotes ton-independent intracellular survival of Neisseria gonorrhoeae within cervical epithelial cells. Infect Immun 78(6):2429–2437.  https://doi.org/10.1128/IAI.00228-10 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zweig M, Schork S, Koerdt A, Siewering K, Sternberg C, Thormann K, Albers SV, Molin S, van der Does C (2014) Secreted single-stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae. Environ Microbiol 16(4):1040–1052.  https://doi.org/10.1111/1462-2920.12291 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Melanie M. Callaghan
    • 1
  • Jan-Hendrik Heilers
    • 2
  • Chris van der Does
    • 2
  • Joseph P. Dillard
    • 1
  1. 1.Department of Medical Microbiology and ImmunologyUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Institut für Biologie II—MikrobiologieAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations