Skip to main content

Automated Brain Tumor Segmentation on Magnetic Resonance Images and Patient’s Overall Survival Prediction Using Support Vector Machines

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10670))

Included in the following conference series:

Abstract

This study is aimed to develop two algorithms for glioma tumor segmentation and patient’s overall survival (OS) prediction with machine learning approaches. The segmentation algorithm is fully automated to accurately and efficiently delineate the whole tumor on a magnetic resonance imaging (MRI) scan for radiotherapy treatment planning. The survival algorithm predicts the OS for glioblastoma multiforme (GBM) patients based on regression and classification principles. Multi-institutional BRATS’2017 data of MRI scans from 477 patients with high-grade and lower-grade glioma (HGG/LGG) used in this study. Clinical patient survival data of 291 glioblastoma multiforme (GBM) were available in the provided data. Support vector machines (SVMs) were used to develop both algorithms. The segmentation chain comprises pre-processing with a goal of noise removal, feature extraction of the image intensity, segmentation process using a non-linear classifier with ‘Gaussian’ kernel, and post-processing to enhance the segmentation morphology. The OS prediction algorithm sequence involves two steps; extraction of patient’s age, and segmented tumor’s size and its location features; prediction process using a non-linear classifier and a linear regression model with ‘Gaussian’ kernels. The algorithms were trained, validated and tested on BRATS’2017’s training, validation, and testing datasets. Average Dice for the whole tumor segmentation obtained on the validation and testing datasets is 0.53 ± 0.31 (median 0.60) which indicates the consistency of the proposed algorithm on the new “unseen” data. For OS prediction, the mean accuracy is 0.49 for the validation dataset and 0.35 for the testing dataset based on regression principle; whereas an overall accuracy of 1.00 achieved in classification into short, medium, and long-survivor classes for a designed validation dataset. The computational time for the automated segmentation algorithm took approximately 3 min. In its present form, the segmentation tool is fully automated, fast, and provides a reasonable segmentation accuracy on the multi-institutional dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holland, E.C.: Progenitor cells and glioma formation. Curr. Opin. Neurol. 14(6), 683–688 (2001)

    Article  Google Scholar 

  2. Ohgaki, H., Kleihues, P.: Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J. Neuropathol. Exp. Neurol. 64(6), 479–489 (2005)

    Article  Google Scholar 

  3. Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavanee, W.K.: WHO Classification of Tumours of the Central Nervous System, 4th edn. WHO/IARC, Lyon (2007)

    Google Scholar 

  4. Podgorsak, E.B.: Radiation Oncology Physics: A Handbook for Teachers and Students. International Atomic Energy Agency, Vienna (2005)

    Google Scholar 

  5. Angelini, E.D., Clatz, O., Mandonnet, E., et al.: Glioma dynamics and computational models: a review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr. Med. Imaging Rev. 3(4), 262–276 (2007)

    Article  Google Scholar 

  6. Bauer, S., Wiest, R., Nolte, L.P., Reyes, M.: A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97–R129 (2013)

    Article  Google Scholar 

  7. Kaus, M.R., Warfield, S.K., Nabavi, A., Chatzidakis, E., Black, P.M., Jolesz, F.A., Kikinis, R.: Segmentation of meningiomas and low grade gliomas in MRI. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 1–10. Springer, Heidelberg (1999). https://doi.org/10.1007/10704282_1

    Chapter  Google Scholar 

  8. Bach Cuadra, M., De Craene, M., Duay, V., et al.: Dense deformation field estimation for atlas-based segmentation of pathological MR brain images. Comput. Methods Programs Biomed. 84(2–3), 66–75 (2006)

    Article  Google Scholar 

  9. Weizman, L., Ben Sira, L., Joskowicz, L., et al.: Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI. Med. Image Anal. 16(1), 177–188 (2012)

    Article  Google Scholar 

  10. Fletcher-Heath, L.M., Hall, L.O., Goldgof, D.B., Murtagh, F.R.: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif. Intell. Med. 21(1–3), 43–63 (2001)

    Article  Google Scholar 

  11. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 8(3), 275–283 (2004)

    Article  Google Scholar 

  12. Pohl, K.M., Fisher, J., Levitt, J.J., Shenton, M.E., Kikinis, R., Grimson, W.E.L., Wells, W.M.: A unifying approach to registration, segmentation, and intensity correction. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 310–318. Springer, Heidelberg (2005). https://doi.org/10.1007/11566465_39

    Chapter  Google Scholar 

  13. Kaster, F.O., Menze, B.H., Weber, M.-A., Hamprecht, F.A.: Comparative validation of graphical models for learning tumor segmentations from noisy manual annotations. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MCV 2010. LNCS, vol. 6533, pp. 74–85. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18421-5_8

    Chapter  Google Scholar 

  14. Fischl, B., Salat, D.H., Busa, E., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)

    Article  Google Scholar 

  15. Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3), 839–851 (2005)

    Article  Google Scholar 

  16. Zacharaki, E.I., Shen, D., Lee, S.K., Davatzikos, C.: ORBIT: a multiresolution framework for deformable registration of brain tumor images. IEEE Trans. Med. Imaging 27(8), 1003–1017 (2008)

    Article  Google Scholar 

  17. Cuadra, M.B., Pollo, C., Bardera, A., et al.: Atlas-based segmentation of pathological brain MR images using a model of lesion growth. IEEE Trans. Med. Imaging 23(10), 1301–1314 (2004)

    Article  Google Scholar 

  18. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)

    Article  Google Scholar 

  19. Kamnitsas, K., Ledig, C., Newcombe, V.F., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  20. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., et al.: 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 30(9), 1323–1341 (2012)

    Article  Google Scholar 

  21. Jiang, J., Wu, Y., Huang, M., et al.: 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets. Comput. Med. Imaging Graph. 37(7–8), 512–521 (2013)

    Article  Google Scholar 

  22. Zhuge, Y., Krauze, A.V., Ning, H., et al.: Brain tumor segmentation using holistically nested neural networks in MRI images. Med. Phys. 44(10), 5234–5243 (2017)

    Article  Google Scholar 

  23. Li, Y., Jia, F., Qin, J.: Brain tumor segmentation from multimodal magnetic resonance images via sparse representation. Artif. Intell. Med. 73, 1–13 (2016)

    Article  Google Scholar 

  24. Hou, L., Samaras, D., Kurc, T., et al.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433. IEEE (2010)

    Google Scholar 

  25. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  26. Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_44

    Chapter  Google Scholar 

  27. Tustison, N.J., Shrinidhi, K.L., Wintermark, M., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13(2), 209–225 (2015)

    Article  Google Scholar 

  28. Havaei, M., Jodoin, P.-M., Larochelle, H.: Efficient interactive brain tumor segmentation as within-brain kNN classification. In: 22nd International Conference on Pattern Recognition 2014, pp. 556–561. IEEE (2014)

    Google Scholar 

  29. Gooya, A., Pohl, K.M., Bilello, M., et al.: GLISTR: glioma image segmentation and registration. IEEE Trans. Med. Imaging 31(10), 1941–1954 (2012)

    Article  Google Scholar 

  30. Parisot, S., Duffau, H., Chemouny, S., Paragios, N.: Joint tumor segmentation and dense deformable registration of brain MR images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 651–658. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_80

    Chapter  Google Scholar 

  31. Wels, M., Carneiro, G., Aplas, A., Huber, M., Hornegger, J., Comaniciu, D.: A discriminative model-constrained graph cuts approach to fully automated pediatric brain tumor segmentation in 3-D MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 67–75. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85988-8_9

    Chapter  Google Scholar 

  32. Bauer, S., Nolte, L.-P., Reyes, M.: Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23626-6_44

    Chapter  Google Scholar 

  33. Wu, W., Chen, A.Y., Zhao, L., Corso, J.J.: Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features. Int. J. Comput. Assist. Radiol. Surg. 9(2), 241–253 (2014)

    Article  Google Scholar 

  34. Rios Velazquez, E., Meier, R., Dunn Jr., W.D., et al.: Fully automatic GBM segmentation in the TCGA-GBM dataset: prognosis and correlation with VASARI features. Sci. Rep. 5, 1–10 (2015)

    Article  Google Scholar 

  35. Riklin-Raviv, T., Van Leemput, K., Menze, B.H., et al.: Segmentation of image ensembles via latent atlases. Med. Image Anal. 14, 654–665 (2010)

    Article  Google Scholar 

  36. Corso, J.J., Sharon, E., Dube, S., et al.: Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Trans. Med. Imaging 27(5), 629–640 (2008)

    Article  Google Scholar 

  37. Zikic, D., Glocker, B., et al.: Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 369–376. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_46

    Chapter  Google Scholar 

  38. Le Folgoc, L., Nori, A.V., Ancha, S., Criminisi, A.: Lifted auto-context forests for brain tumour segmentation. In: Alessandro, C., et al. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 171–183. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  39. Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI-BraTS 2014, pp. 31–35 (2014)

    Google Scholar 

  40. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  41. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  42. Archip, N., Jolesz, F.A., Warfield, S.K.: A validation framework for brain tumor segmentation. Acad. Radiol. 14(10), 1242–1251 (2007)

    Article  Google Scholar 

  43. Bakas, S., Akbari, H., Sotiras, A., et al.: Advancing the Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  44. Bakas, S., Akbari, H., Sotiras, A., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

    Google Scholar 

  45. Bakas, S., Akbari, H., Sotiras, A., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

    Google Scholar 

  46. Verma, R., Zacharaki, E.I., Ou, Y., et al.: Multiparametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad. Radiol. 15(8), 966–977 (2008)

    Article  Google Scholar 

  47. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  48. Christianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, 1st edn. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  49. Fan, R.-E., Chen, P.-H., Lin, C.-J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)

    MathSciNet  MATH  Google Scholar 

  50. Schoelkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  51. Platt, J.: Sequential minimal optimization: a fast algorithm for training support vector machines. Technical report MSR-TR-98-14 (1999)

    Google Scholar 

  52. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Smola, A.J., Bartlett, P., Schoelkopf, B., Schuurmans, D. (eds.) Advances in Large Margin Classifiers 1999, pp. 61–74. MIT Press (2000)

    Google Scholar 

  53. Soille, P.: Morphological Image Analysis: Principles and Applications, pp. 164–165. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-05088-0

    Book  MATH  Google Scholar 

  54. Nyul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 19(2), 143–150 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander F. I. Osman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osman, A.F.I. (2018). Automated Brain Tumor Segmentation on Magnetic Resonance Images and Patient’s Overall Survival Prediction Using Support Vector Machines. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75238-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75237-2

  • Online ISBN: 978-3-319-75238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics